Cereal Research Communications

, Volume 47, Issue 1, pp 157–169 | Cite as

Progress in Tetraploid Wheat Breeding through the Use of Synthetic Hexaploid Amphiploids

  • N. Daskalova
  • S. Doneva
  • Y. Stanoeva
  • I. Belchev
  • P. SpetsovEmail author


Four amphiploid lines (SHW) based on T. monococcum (Tm) and T. boeoticum (Tb) were crossed to T. durum varieties to generate 13 combinations. Field germination and winter survival of hybrid plants in F2 were assessed. Among all crosses, those with SHW8A-Tb and SHW9A-Tm showed highest field germination but with different degrees of spike fragility. The variation on seed number and weight per main spike was studied in F4–6 from SHW8A-Tb/Progres and SHW5A-Tb/Severina crosses after individual selection for these traits. Ten lines with durum phenotype from the former and three genotypes with dicoccum plant shape from the latter cross were developed. SDS-PAGE indicated the presence of HMW-GS 1Ax2*+1Aynull subunits in four lines, among which 1Ax2* was inherited from T. boeoticum acc.110 through SHW8A-Tb. Most of the selected genotypes possessed γ-gliadin45, which was relating to good end-use quality. Powdery mildew testing showed that all progenies resulted from the SHW8A-Tb/Progres were susceptible to 12 races of the pathogen, while three lines derived from the SHW5A-Tb/Severina cross behaved differently: G32 expressed resistance to six, G33 to 2, and G34 to 5 races. The selected genotypes from crosses involving SHW with T. boeoticum exhibited good breeding performance compared to tetraploid wheat parents, and might be of breeding interest to further research.


Triticum species synthetic amphiploids recombinants seed storage proteins powdery mildew resistance 



synthetic hexaploid wheat


high-molecular-weight glutenin subunits


Blumeria graminis f. s. tritici


powdery mildew


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2019_4701157_MOESM1_ESM.pdf (161 kb)
Progress in Tetraploid Wheat Breeding through the Use of Synthetic Hexaploid Amphiploids


  1. Ahmed, S., Bux, H., Rasheed, A., Kazi, A.G., Rauf, A., Mahmood, T., Mujeeb-Kazi, A. 2013. Stripe rust resistance in Triticum durum-T. monococcum and T. durum-T. urartu amphiploids. Austr. Plant Pathol. 43:109–113.CrossRefGoogle Scholar
  2. Ahmed, S., Bux, H., Kazi, A.G., Channa, A.W., Qureshi, S.T., Soomro, A.A., Sial, M.A., Rauf, A., Mujeeb-Kazi, A. 2014. Molecular diversity in some A-genome wheat amphiploids (2n = 6x = 42; BBAAAA). Pak. J. Biotech. 11:111–121.Google Scholar
  3. Alvarez, J., Caballero, L., Nadal, S., Ramírez, M., Martín, A. 2009. Development and gluten strength evaluation of introgression lines of Triticum urartu in durum wheat. Cereal Res. Commun. 37:243–248.CrossRefGoogle Scholar
  4. Chhuneja, P., Kumar, K., Stirnweis, D., Hurni, S., Keller, B., Dhaliwal, H.S., Singh, K. 2012. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor. Appl. Genet. 124:1051–1058.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Colmer, T.D., Flowers, T.J., Munns, R. 2006. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57:1059–1078.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cuesta, S., Alvarez, J.B., Guzmán, C. 2017. Identification and molecular characterization of novel LMW-m and -s glutenin genes, and a chimeric -m/-i glutenin gene in 1A chromosome of three diploid Triticum species. J. Cereal Sci. 74:46–55.CrossRefGoogle Scholar
  7. Dai, S., Zhao, L., Xue, X., Jia, Y., Liu, D., Pu, Z., Zheng, Y., Yan, Z. 2015. Analysis of high-molecular-weight glutenin subunits in five amphiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genet. Res. -Charact. Utiliz. 13:186–189.CrossRefGoogle Scholar
  8. Daskalova, N., Doneva, S., Spetsov, P. 2016. Chromosome variation and HMW glutenins in synthetic hexaploid wheats (Triticum turgidum ssp. dicoccum/Aegilops tauschii). Cereal Res. Commun. 44:453–460.CrossRefGoogle Scholar
  9. De Santis, M.A., Giuliani, M.M., Giuzio, L., De Vita, P., Lovegrove, A., Shewry, P.R., Flagella, Z. 2017. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 87:19–29.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dhaliwal, H.S., Garg, M., Singh, H., Chhuneja, P., Kaur, H. 2002. Transfer of HMW-glutenin subunits from wild wheats into Triticum durum and improvement of quality. Cereal Res. Commun. 30:173–180.Google Scholar
  11. Elkot, A.F.A., Chhuneja, P., Kaur, S., Saluja, M., Keller, B., Singh, K. 2015. Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L). PLoS ONE 10(6):e0128297.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Goncharov, N.P. 2011. Genus Triticum L. taxonomy: the present and the future. Plant Syst. Evol. 295:1–11.CrossRefGoogle Scholar
  13. Gorham, J. 1990. Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41:623–627.CrossRefGoogle Scholar
  14. Halford, N.G., Forde, J., Shewry, P.R., Kreis, M. 1989. Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci. 62:207–216.CrossRefGoogle Scholar
  15. He, D., Li, H., Xu, S., Duan, X., Zhou, Y., Li, L. 2007. Reaction to powdery mildew and stripe rust in related species and landraces of wheat. Genet. Res. Crop Ev. 54:213–219.CrossRefGoogle Scholar
  16. Hu, X.G., Wu, B.H., Yan, Z.H., Liu, D.C., Wei, Y.M., Zheng, Y.L. 2010. Characterization of a novel 1Ay gene and its expression protein in Triticum urartu. Agric. Sci. China 9:1543–1552.CrossRefGoogle Scholar
  17. Hu, X.G., Wu, B.H., Bi, Z.G., Liu, D.C., Zhang, L.Q., Yan, Z.H., Wei, Y.M., Zheng, Y.L. 2012. Allelic variation and distribution of HMW glutenin subunit 1Ay in Triticum species. Genet. Res. Crop Ev. 59:491–497.CrossRefGoogle Scholar
  18. Khan, K., McDonald, E., Banasik, O.J. 1983. Polyacrylamide gel electrophoresis of gliadin proteins for wheat variety. Identification-procedural modifications and observations. Cereal Chem. 60:178–181.Google Scholar
  19. Khoshro, H., Bihamta, M., Hassanii, M., Omidi, M., Aghaei, M. 2010. Length polymorphism at the Glu-A3 and Glu-D3 in wild relatives of wheat. Cereal Res. Commun. 38(3):375–385.CrossRefGoogle Scholar
  20. Konopatskaia, I., Vavilova, V., Blinov, A., Goncharov, N.P. 2016. Spike morphology genes in wheat species (Triticum L.). Proc. Latvian Acad. Sci. Section B, Vol. 70:345–355.Google Scholar
  21. Lafiandra, D., D’Ovidio, R., Porceddu, E., Margiotta, B., Colaprico, G. 1993. New data supporting high Mr glutenin subunits as the determinant of quality differences among the pairs 5+10 vs. 2+12. J. Cereal Sci. 18:197–205.CrossRefGoogle Scholar
  22. Lage, J., Skovmand, B., Anderson, S.B. 2003. Characterization of greenbug (Homoptera: Aphididae) resistance in synthetic hexaploid wheats. J. Econ. Entom. 90:1922–1928.CrossRefGoogle Scholar
  23. Lage, J., Skovmand, B., Anderson, S.B. 2004. Field evaluation of emmer wheat-derived synthetic hexaploid wheat for resistance to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entom. 97:1065–1070.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lage, J., Skovmand, B., Peña, R.J., Anderson, S.B. 2006. Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet. Res. Crop Ev. 53:955–962.CrossRefGoogle Scholar
  25. Li, H.Y., Li, Z. L., Zeng, X.X., Zhao, L.B., Chen, G., Kou, C.L., Ning, S.Z., Yuan, Z.W., Zheng,Y.L., Liu, D.C., Zhang, L.Q. 2016. Molecular characterization of different Triticum monococcum ssp. monococcum Glu-A1mx alleles. Cereal Res. Commun. 44:444–452.CrossRefGoogle Scholar
  26. Liu, H., Sultan, M.A.R.F., Liu, X.I., Zhang, J., Yu, F., Zhao, H.X. 2015. Physiological and comparative prot-eomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). PLoS ONE 10(4):e0121852.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lutz, J., Limpert, E., Bartoš, P., Zeller, F.J. 1992. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I. Czechoslovakian cultivars. Plant Breed. 108:33–39.CrossRefGoogle Scholar
  28. Mac Key, J. 2005. Wheat: its concept, evolution and taxonomy, In: Durum wheat breeding: Current approaches and future strategies (eds. C. Royo et al.). Haworth Press, Inc, NY, USA vol. 1, pp. 3–61.Google Scholar
  29. Metakovsky, E.V. 1991. Gliadin allele identification in common wheat. II. Catalogue of gliadin alleles in common wheat. J. Genet. Breed. 45:325–344.Google Scholar
  30. Mujeeb-Kazi, A., Kazi, A.G., Dundas, I., Rasheed, A., Ogbonnaya, F., Chen, P., Kishi, M., Bonnett, D., Wang, R.R.-C., Xu, S., Bux, H., Mahmood, T., Farrakh, S. 2013. Genetic diversity for wheat improvement as a conduit for food security. Adv. Agron. 122:179–259.CrossRefGoogle Scholar
  31. Mujeeb-Kazi, A., Ali, N., Ibrahim, A., Napar, A.A., Jamil, M., Hussain, S., Mahmood, Z., Delgado, R., Rosas, V., Cortes, A., Rajaram, S. 2017. Tissue culture mediated allelic diversification and genomic enrichment of wheat to combat production constraints and address food security. Plant Tiss. Cult. Biotech. 27:89–140.CrossRefGoogle Scholar
  32. Olson, E.L., Brown-Guedira, G., Marshall, D., Stack, E., Bowden, R.L., Jin, Y., Rouse, M., Pumphrey, M.O. 2010. Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci. 50:1823–1830.CrossRefGoogle Scholar
  33. Payne, P.I., Lawrence, G.J. 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunit in hexaploid wheat. Cereal Res. Commun. 11:29–35.Google Scholar
  34. Radchenko, E.E. 2011. Resistance of Triticum species to cereal aphids. Czech J. Genet. Plant Breed. 47 (Special issue): S67–S70.CrossRefGoogle Scholar
  35. Rafique, K., Rasheed, W., Gul, A., Mujeeb-Kazi, A. 2012. Powdery mildew resistance in some new wheat amphiploids (2n = 6x = 42) derived from A- and S-genome diploid progenitors. Plant Genet. Res. – Charact. Utiliz. 10:165–170.CrossRefGoogle Scholar
  36. Ribeiro, M., Bancel, E., Faye, A., Dardevet, M., Ravel, C., Branlard, G., Igrejas, G. 2013. Proteogenomic characterization of novel x-type high molecular weight glutenin subunit 1Ax1.1. Int. J. Mol. Sci. 14: 5650–5667.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Rogers, W.J., Miller, T.E., Payne, P.I., Seekings, J.A., Sayers, E.J., Holt, L.M., Law, C.N. 1997. Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss. ssp. thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica 93:19–29.CrossRefGoogle Scholar
  38. Silva, F.A.S., Azevedo, C.A.V. 2016. The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 11:3733–3740.CrossRefGoogle Scholar
  39. Singh, N.K., Shepherd, K.W., Cornish, G.B. 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 14:203–208.CrossRefGoogle Scholar
  40. Sood, S., Kuraparthy, V., Bai, G., Gill, B.S. 2009. The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploidy wheats, trace their origin to independent mutations at non-orthologous loci. Theor. Appl. Genet. 119:341–351.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Spetsov, P., Plamenov, D., Kiryakova, V. 2006. Distribution and characterization of Aegilops and Triticum species from the Bulgarian Black Sea coast. Centr. Eur. J. Biol. 1:399–411.Google Scholar
  42. Suman, S., Mahal, G.S., Harjit, S. 2004. Effect of transfer of high molecular weight glutenin subunits encoded at Glu-A1 locus of wild Triticum species in Triticum durum. Ind. J. Genet. Plant Breed. 64:28–30.Google Scholar
  43. Trethowan, R.M., Mujeeb-Kazi, A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 48:1255–1265.CrossRefGoogle Scholar
  44. Valkoun, J.J. 2001. Wheat pre-breeding using wild progenitors. Euphytica 119:17–23.CrossRefGoogle Scholar
  45. van Ginkel, M., Ogbonnaya, F. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res. 104:86–94.CrossRefGoogle Scholar
  46. Varzakas, T., Kozub, N., Xynias, I.N. 2014. Quality determination of wheat: genetic determination, biochemical markers, seed storage proteins – bread and durum wheat germplasm. J. Sci. Food Agric. 94:2819–2829.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Villareal, R.L., Sayre, K., Banuelos, O., Mujeeb-Kazi, A. 2001. Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Sci. 41:274–274.CrossRefGoogle Scholar
  48. Zaharieva, M., Ayana, N.G., Al Hakimi, A., Misra, S.C., Monneveux, P. 2010. Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genet. Res. Crop Ev. 57:937–962.CrossRefGoogle Scholar
  49. Zaharieva, M., Monneveux, P. 2014. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genet. Res. Crop Ev. 61:677–706.CrossRefGoogle Scholar
  50. Zaim, M., Hassouni, K.E., Gamba, F., Filali-Maltouf, A., Belkadi, B., Sourour, A., Amri, A., Nachit, M., Taghouti, M., Bassi, F.M. 2017. Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability, and industrial quality across Mediterranean sites. Field Crops Res. 214:219–227.CrossRefGoogle Scholar
  51. Zhang, Y., Luo, G., Liu, D., Wang, D., Yang, W., Sun, J., Zhang, A., Zhan, K. 2015. Genome-, transcriptome-and proteome-wide analyses of the gliadin gene families in Triticum urartu. PLoS ONE 10(7):e0131559.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • N. Daskalova
    • 1
  • S. Doneva
    • 2
  • Y. Stanoeva
    • 2
  • I. Belchev
    • 2
  • P. Spetsov
    • 3
    Email author
  1. 1.Plant Production DepartmentTechnical UniversityVarnaBulgaria
  2. 2.Dobrudzha Agricultural InstituteGeneral ToshevoBulgaria
  3. 3.Aksakovo CenterAksakovo, Varna regionBulgaria

Personalised recommendations