Advertisement

Cereal Research Communications

, Volume 47, Issue 1, pp 67–77 | Cite as

Virus-induced Gene Silencing of TaERECTA Increases Stomatal Density in Bread Wheat

  • J. C. Zheng
  • T. Liu
  • J. Q. Li
  • X. Wang
  • W. Y. Li
  • F. Xu
  • Q. W. ZhanEmail author
Pathology

Abstract

Barley stripe mosaic virus (BSMV)-based virus induced gene silencing (VIGS) is an effective strategy for rapid determination of functional genes in wheat plants. ERECTA genes are reported to regulate stomatal pattern of plants, and manipulation of TaERECTA (a homo-logue of ERECTA in bread wheat) is a potential route for investigating stomatal development. Here, the leucine-rich repeat domains (LRRs) and transmembrane domains of TaERECTA were selected to gain BSMV:ER-LR and BSMV:ER-TM constructs, respectively, targeting TaERECTA for silencing in wheat cultivars ‘Bobwhite’ and ‘Cadenza’, to identify the function of TaERECTA on stomatal patterns. The results showed that reduced expression of TaERECTA caused an increased stomatal and epidermal cell density by average 13.5% and 3.3%, respectively, due to the significantly reduced size of leaf epidermal and stomatal cells, and this led to an increase in stomatal conductance. These suggest that modulation of TaERECTA offers further opportunities in stomatal engineering for the adaptation of photosynthesis in wheat.

Keywords

BSMV-VIGS stomatal conductance stomatal density TaERECTA Triticum aestivum L. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2019_4701067_MOESM1_ESM.pdf (1.5 mb)
Virus-induced Gene Silencing of TaERECTA Increases Stomatal Density in Bread Wheat

References

  1. Afzal A.J., Srour, A., Goil, A., Vasudaven, S., Liu, T., Samudrala, R., Dogra, N., Kohli, P., Malakar, A., Lightfoot, D.A. 2013. Homo-dimerization and ligand binding by the leucine-rich repeat domain at RHG1/ RFS2 underlying resistance to two soybean. BMC Plant Biol. 13:1–15.CrossRefGoogle Scholar
  2. Berger, D., Altmann, T. 2000. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Gene Dev. 14:1119–1131.PubMedGoogle Scholar
  3. Hara, K., Kajita, R., Torii, K.U., Bergmann, D.C., Kakimoto, T. 2007. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Gene Dev. 21:1720–1725.CrossRefGoogle Scholar
  4. Hara, K., Yokoo, T., Kajita, R., Onishi, T., Yahata, S., Peterson, K.M., Torii, K.U., Kakimoto, T. 2009. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol. 50:1019–1031.CrossRefGoogle Scholar
  5. Huang, L.Z., Yasir, T.A., Phillips, A.L., Hu, Y.G. 2013. Isolation and characterization of ERECTA genes and their expression patterns in common wheat (Triticum aestivum L.). Aust. J. Crop Sci. 3:S381–S390.Google Scholar
  6. Hunt, L., Gray, J.E. 2009. The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr. Biol. 19:864–869.CrossRefGoogle Scholar
  7. Itoh, J., Nonomura, K., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., Kitano, H., Nagato, Y. 2005. Rice plant development: from zygote to spikelet. Plant Cell Physiol. 46:23–47.CrossRefGoogle Scholar
  8. Kim, T.H., Bohmer, M., Hu, H., Nishimura, N., Schroeder, J.I. 2010. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61:561–591.CrossRefGoogle Scholar
  9. Kusumi, K., Hirotsuka, S., Kumamaru, T., Iba, K. 2012. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J. Exp. Bot. 63:5635–5644.CrossRefGoogle Scholar
  10. Lease, K., Ingham, E., Walker, J.C. 1998. Challenges in understanding RLK function. Curr. Opin. Plant Biol. 1:388–392.CrossRefGoogle Scholar
  11. Lee, W.S., Hammond-Kosack, K.E., Kanyuka, K. 2012. Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: Virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol. 160:582–590.CrossRefGoogle Scholar
  12. Lee, W.S., Rudd, J.J., Hammond-Kosack, K.E., Kanyuka, K. 2014. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol. Plant Microbe In. 27:236–243.CrossRefGoogle Scholar
  13. Masle, J., Gilmore, S.R., Farquhar, G.D. 2005. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870.CrossRefGoogle Scholar
  14. Nadeau, J.A., Sack, F.D. 2002. Control of stomatal distribution on the Arabidopsis leaf surface. Science 296:1697–1700.CrossRefGoogle Scholar
  15. Panwar, V., McCallum, B., Bakkeren, G. 2013. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Mol. Biol. 81:595–608.CrossRefGoogle Scholar
  16. Shpak, E.D., Lakeman, M.B., Torii, K.U. 2003. Dominant-negative receptor uncovers redundancy in the arabidopsis ERECTA leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell 15:1095–1110.CrossRefGoogle Scholar
  17. Shpak, E.D., McAbee, J.M., Pillitteri, L.J., Torii, K.U. 2005. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293.CrossRefGoogle Scholar
  18. Sun, X., Luo, X., Sun, M., Chen, C., Ding, X., Wang, X., Yang, S., Yu, Q., Jia, B., Ji, W., Cai, H., Zhu, Y. 2014. A Glycine Soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol. 55:99–188.CrossRefGoogle Scholar
  19. Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F., Komeda, Y. 1996. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735–746.PubMedPubMedCentralGoogle Scholar
  20. Villagarcia, H., Morin, A.C., Shpak, E.D., Khodakovskaya, M.V. 2012. Modification of tomato growth by expression of truncated ERECTA protein from Arabidopsis thaliana. J. Exp. Bot. 63:6493–6504.CrossRefGoogle Scholar
  21. Xing, H.T., Guo, P., Xia, X.L., Yin, W.L. 2011. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. Planta 234:229–241.CrossRefGoogle Scholar
  22. Xu, Y.F., Ookawa, T., Ishihara, K. 1997. Analysis of the photosynthetic characteristics of the high-yielding rice cultivar Takanari. Jpn. J. Crop Sci. 66:616–623.CrossRefGoogle Scholar
  23. Yang, J., Isabel, O.M., Jaworski, J.G., Beachy, R.N. 2011. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiol. Bioch. 49:1448–1455.CrossRefGoogle Scholar
  24. Yuan, C., Li, C., Yan, L.J., Jackson, A.O., Liu, Z.Y., Han, C.G., Yu, J.L., Li, D.W. 2011. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One 6:e26468.CrossRefGoogle Scholar
  25. Zadoks, J.C., Chang, T.T., Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415–421.CrossRefGoogle Scholar
  26. Zheng, J.C., Hu, Y.G. 2016. TaERECTA responses to phytohormones, Mg2+ stress and dehydration and its correlation with stomatal density in bread wheat. Cereal Res. Commun. 44:206–216.CrossRefGoogle Scholar
  27. Zheng, J.C., Yang, Z.Y., Madgwick, P.J., Carmo-Silva, E., Parry, M.A.J., Hu, Y.G. 2015. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat. PLoS One 10:e0128415.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • J. C. Zheng
    • 1
  • T. Liu
    • 1
  • J. Q. Li
    • 1
  • X. Wang
    • 1
  • W. Y. Li
    • 1
  • F. Xu
    • 1
  • Q. W. Zhan
    • 1
    Email author
  1. 1.College of AgronomyAnhui Science and Technology UniversityFeng yang, AnhuiChina

Personalised recommendations