Cereal Research Communications

, Volume 46, Issue 4, pp 628–638 | Cite as

Chromosomal Location and Mapping of Quantitative Trait Locus Determining Technological Parameters of Grain and Flour in Strong-flour Bread Wheat Cultivar Saratovskaya 29

  • L. V. ShchukinaEmail author
  • T. A. Pshenichnikova
  • E. K. Khlestkina
  • S. Misheva
  • T. Kartseva
  • A. Abugalieva
  • A. Börner
Open Access


Bread wheat is the primary bread crop in the majority of countries in the world. The most important product that is manufactured from its grain and flour is yeast bread. In order to obtain an excellent bread, grain with high physical properties is needed for flour and dough. The Russian spring wheat cultivar Saratovskaya 29 is characterized by its exclusively high physical properties of flour and dough. The purpose of this work was to identify the chromosomes carrying the main loci for these traits in Saratovskaya 29 and to map them using recombinant substitution lines genotyped with molecular markers. A set of inter-varietal substitution lines Saratovskaya 29 (Yanetzkis Probat) was used to identify the “critical” chromosomes. The donor of individual chromosomes is a spring cultivar with average dough strength and tenacity. Substitution of 1D and 4D*7A chromosomes in the genetic background of Saratovskaya 29 resulted in a significant decrease in the physical properties of the dough. Such a deterioration in the case of 1D chromosome might be related to the variability of gluten protein composition. With the help of recombinant substitution double haploid lines obtained from a Saratovskaya 29 (Yanetzkis Probat 4D*7A) substitution line the region on the 4D chromosome was revealed in the strong-flour cultivar Saratovskaya 29, with the microsatellite locus Xgwm0165 to be associated with the unique physical properties of flour and dough. The detected locus is not related to the composition gluten proteins. These locus may be recommended to breeders for the selection of strong-flour cultivars. Additionally, a QTL associated with vitreousness of grain was mapped in the short arm of chromosome 7A.


bread wheat physical properties of dough substitution lines recombinant lines molecular markers 

Supplementary material

42976_2018_4604628_MOESM1_ESM.pdf (260 kb)
Chromosomal Location and Mapping of Quantitative Trait Locus Determining Technological Parameters of Grain and Flour in Strong-flour Bread Wheat Cultivar Saratovskaya 29


  1. Anonymous. 1988. Method of state variety testing of crops. Gosagroprom. Moscow, Russia. (in Russian).Google Scholar
  2. Arbuzova, V.S., Ermakova, M.F., Popova, P.K. 2001. Studies of monosomic lines of cv. Saratovskaya 29 on productivity and grain technological properties. EWAC Newsletter (Proceedings of the 11th EWAC Conference, Novosibirsk). pp. 80–82.Google Scholar
  3. Berkutova, N.S. 1991. The methods of evaluation and formation of grain quality. Rosagropromizdat. Moscow, Russia. pp. 10–22. (in Russian)Google Scholar
  4. Branlard, G., Dardevet, M., Saccomano, R., Lagoutte, F., Gourdon, J. 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 119:59–67.CrossRefGoogle Scholar
  5. Bulatova, K.M. 1985. The study of glutenin component composition of wheat. Vestnik sel’skokhozyastvennykh nauk Kazakhstana. 4:37–39. (In Russian)Google Scholar
  6. Campbell, K.G., Finney, P.L., Bergman, C.J., D. Gualberto, G., Anderson, J.A., Giroux, M.J., Siritunga, D., Zhu, J., Gendre, F., Roue, C., Verel, A., Sorrells, M.E. 2001. Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci. 41:1275–1285.CrossRefGoogle Scholar
  7. Chen, F., Xu, H.-X., Zhang, F.-Y., Xia, X.-C., He, Z.-H., Wang, D.-W., Dong, Z.-D., Zhan, K.-H., Cheng, X.-Y., Cui, D.-Q. 2010. Physical mapping of puroindoline b-2 genes and molecular characterization of a novel variant in durum wheat (Triticum turgidum L.). Mol. Breeding 28:153–161. DOI 10.1007/s11032-010-9469-2.CrossRefGoogle Scholar
  8. Cornish, G.B., Békés, F., Eagles, H.A., Payne, P.I. 2006. Prediction of dough properties for bread wheats. In: Gliadin and Glutenin. The unique balance of wheat quality. Eds.: C. Wrigley, F. Békés, W. Bushuk. AACC International, pp. 243–279.Google Scholar
  9. Dospekhov, B.A. 1985. The technique of field experiment (with the basic statistical processing of experimental results). Agropromizdat. Moscow, Russia. (in Russian)Google Scholar
  10. Echeverry-Solarte, M., Kumar, A., Kianian, Sh., Simsek, S., Alamri, M.S., Mantovani, E.E., McClean, P.E., Deckard, E.L.,·Elias, E., Schatz, B., Xu, S.S., Mergoum, V. 2015. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes. Theor. Appl. Genet. 128:893–912.CrossRefGoogle Scholar
  11. El-Feki, W.M., Byrne, P.F., Reid, S.D., Lapitan, N.L.V., Haley, S.D. 2013. Quantitative trait locus mapping for end-use quality traits in hard winter wheat under contrasting soil moisture levels. Crop Sci. 53:1953–1967.CrossRefGoogle Scholar
  12. Gaidalenok, R.F., Khrabrova, M.A., Litkovskaya, N.P., Kovaleva, N.M. 1995. Development and use of lines with substituted chromosomes in Saratovskaya 29 / Yanetzkis Probat. EWAC Newsletter (Proceedings of 9th EWAC Conference, Gatersleben-Wernigerode). pp. 128–131.Google Scholar
  13. Galili, G., Feldman, M. 1983. Genetic control of endosperm proteins in wheat. Variation in high molecular weight glutenin and gliadin subunits of Triticum aestivum. Theor. Appl. Genet. 66:77–86.CrossRefGoogle Scholar
  14. Geng, H., Beecher, B.S., He, Zh., Morris, C.F. 2012. Physical mapping of puroindoline b-2 genes in wheat using ‘Chinese Spring’ chromosome group 7 deletion lines. Crop Sci. 52:2674–2678.CrossRefGoogle Scholar
  15. Groos, C., Robert, N., Brevas, E., Charmet, G. 2003. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 106:1032–1040.CrossRefGoogle Scholar
  16. Huang, X.Q., Cloutier, S., Lycar, L., Radovanovic, N., Humphreys, D.G., Noll, J.S., Somers, D.J., Brown, P.D. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 113:753–766.CrossRefGoogle Scholar
  17. Khlestkina, E.K., Roder, M.S., Pshenichnikova, T.A., Börner, A. 2010. Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Mol. Breeding. 25:125–132.CrossRefGoogle Scholar
  18. Khlestkina, E.K., Pshenichnikova, T.A., Usenko, N.I., Otmakhova, Yu.S. 2016. Prospective applications of molecular genetic approaches to control technological properties of wheat grain in the context of the “grain – flour – bread” chain. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding, 20(4):511–527.CrossRefGoogle Scholar
  19. Kozmina, N.P. 1969. Grain. Moscow, Kolos Publisher, 368 p. (in Russian)Google Scholar
  20. Kosmolak, F.G., Larson, R.I., McKenzie, H. 1980. Milling and baking quality of Rescue × Cadet reciprocal substitution lines. Can. J. Plant Sci. 60:1333–1341.CrossRefGoogle Scholar
  21. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.CrossRefGoogle Scholar
  22. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L. 1987.Google Scholar
  23. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1:174–181.Google Scholar
  24. Likhenko, I.V. 2008. The use of world and local varieties gene pool of spring bread wheat in breeding (to 50 years of release of the cultivar Saratovskaya 29). Rastenievodstvo i selektsiya (Crop production and Breeding). 1:25–30.Google Scholar
  25. Manly, K.F., Cudmore, R.H., Meer, J.M. 2001. Map manager QTX, cross-platform software for genetic mapping. Mamm. Genome. 12:930–932.CrossRefGoogle Scholar
  26. Mansur, L.M., Qalset, C.O., Kasarda, D.D., Morris, R. 1990. Effects of “Cheyenne” chromosomes on milling and baking quality in “Chinese Spring” wheat in relation to glutenin and gliadin storage protein. Crop Sci. 30:593–602.CrossRefGoogle Scholar
  27. Maystrenko, O.I., Troshina, A.V., Ermakova, M.F. 1973. Chromosomal arm location of genes for flour quality in wheat using ditelosomic lines. Proc. 4th Intern. Wheat Genetics Symp., Missouri Agr. Exptl. Station. pp. 51–56.Google Scholar
  28. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., Xia, X.C. 2013. Catalogue of Gene Symbols for Wheat. 12th International Wheat Genetics Symposium, 8–13 September, Yokohama, Japan.Google Scholar
  29. Morgunov, A.I., Rogers, W.J., Sayers, E.J., Metakovsky, E.V. 1990. The high-molecular-weight glutenin subunit composition of Soviet varieties. Euphytica 51:41–52.CrossRefGoogle Scholar
  30. Morozova, E.V., Pshenichnikova, T.A., Simonov, A.V., Shchukina, L.V., Chistyakova, A.K., Khlestkina, E.K. 2016. A comparative study of grain and flour quality parameters among Russian bread wheat cultivars developed in different historical periods and their association with certain molecular markers. EWAC Newsletter (Proceedings of the 16th International EWAC Conference, 24–29 May 2015, Lublin, Poland). pp. 49–56.Google Scholar
  31. Payne, P.I., Seekings, J.A., Worland, A.J., Holt, L.M. 1987. Allelic variation of glutenin subunits and gliadins and its effect on bread-making quality in wheat: analysis of F5 progeny from Chinese Spring × Chinese Spring (Hope 1A). J. Cereal Sci. 6:103–118.CrossRefGoogle Scholar
  32. Peña, R.J. 2002. Wheat for bread and other foods. BREAD WHEAT. Improvement and Production, Rome, 2002, FAO.Google Scholar
  33. Pestsova, E., Salina, E.A., Börner, A., Korzun, V., Maystrenko, O.I., Röder, M.S. 2000. Microsatellites confirm the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). Theor. Appl. Genet. 101:95–99.CrossRefGoogle Scholar
  34. Pshenichnikova, T.A., Ermakova, M.F., Popova, R.K. 2006. Technological properties of grain and flour in bread wheat lines with inter-varietal substitution of chromosomes of 1 and 6 homoeological groups. Sel’skokhozya’ctvennaya biologia (Agricultural biology). 1:57–62.Google Scholar
  35. Rogers, W.J., Payne, P.I., Harinder, H. 1989. The HMW glutenin subunits and gliadin composition of German-grown wheat varieties and their relationship with bread-making quality. Plant Breeding 103:89–100.CrossRefGoogle Scholar
  36. Sourdille, P., Cadalen, T., Guyomarc’h, J., Snape, J.W., Perretant, M.R., Charmet, G., Boeuf, C., Bernard, S., Bernard, M. 2003. An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor. Appl. Genet. 106:530–538.CrossRefGoogle Scholar
  37. Shchukina, L.V., Pshenichnikova, T.A., Chistyakova, A.K., Khlestkina, E.K., Börner, A. 2017. Properties of grain, flour and dough in bread wheat lines with Aegilops markgrafii introgressions. Cereal Research Communications 45:296–306.CrossRefGoogle Scholar
  38. Welsh, J.R., Hehn, E.K. 1964. The effect of chromosome 1D on hexaploid wheat flour quality. Crop Sci. 4:320–323.CrossRefGoogle Scholar
  39. Wilkinson, M., Wan, Y., Tosi, P., Leverington, M., Snape, J., Mitchell, R.A.C., Shewry, P.R. 2008. Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. J. Cereal Sci. 48:722–728.CrossRefGoogle Scholar
  40. Zemetra, R.S., Morris, R., Mattern, P.P., Seip, L. 1987. Gene location for flour quality in winter wheat using reciprocal chromosome substitutions. Crop Sci. 27:677–681.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • L. V. Shchukina
    • 1
    Email author
  • T. A. Pshenichnikova
    • 1
  • E. K. Khlestkina
    • 1
    • 2
  • S. Misheva
    • 3
  • T. Kartseva
    • 3
  • A. Abugalieva
    • 4
  • A. Börner
    • 5
  1. 1.The Federal Research Center “Institute of Cytology and Genetics”Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.N.I. Vavilov All-Russian Research Institute of Plant Genetic ResourcesSaint-PetersburgRussia
  3. 3.Institute of Plant Physiology and GeneticsBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Kazakh Scientific Research Institute of Agriculture and Plant Growing, Almaty regionRepublic of Kazakhstan
  5. 5.Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)OT GaterslebenGermany

Personalised recommendations