Cereal Research Communications

, Volume 46, Issue 4, pp 668–678 | Cite as

Genetic Diversity of Maize Genotypes with Variable Resistance to Striga asiatica Based on SSR Markers

  • A. I. T. ShayanowakoEmail author
  • H. Shimelis
  • M. D. Laing
  • L. Mwadzingeni
Open Access


Genetic diversity among breeding populations is key in plant breeding programs. This study aimed to determine the extent of genetic diversity among 37 diverse maize genotypes using simple sequence repeat (SSR) markers. The maize genotypes were selected based on their variable resistance to Striga asiatica. Maize genotypes were fingerprinted using 18 polymorphic SSR markers. Marker and population diversity parameters were computed. A total of 191 alleles were detected and the number of effective alleles varied from 2 to 21 per locus with a mean of 11. The polymorphic information content (PIC) of the SSR markers varied from 0.59 to 0.96, with a mean of 0.80. Significant differences were observed among populations, individuals and within individuals. Within and among individual variances accounted for 85% and 13% of the total gene diversity. The genotypes were grouped into three main genetic clusters, which were not influenced by genotype origin. Mean genetic distance (0.43) and low geneflow (0.18) were observed among the populations. High mean genetic identity (0.65) was recorded, indicating potential genetic ‘bottleneck’ among the selected germplasm. The following open pollinated varieties; Border King, Colorado, CIMMYT’s ZM OPVs, Mac Pearl, Shesha, Nel Choice, Natal 8Lines, Nel Choice QPM, Hickory King, Kep Select, Obatanpa and the Striga resistant synthetic variety DSTRYSYN15 were selected from different clusters for breeding.


FOS genetic variation microsatellites southern Africa Striga Zea mays 


  1. Aci, M.M., Revilla, P., Morsli, A., Djemel, A., Belalia, N., Kadri, Y., Khelifi-Saloui, M., Ordás, B., Khelifi, L. 2013. Genetic diversity in Algerian maize (Zea mays L.) landraces using SSR markers. Maydica 58:304–310.Google Scholar
  2. Akinwale, R., Badu-Apraku, B., Fakorede, M., Vroh-Bi, I. 2014. Heterotic grouping of tropical early-maturing maize inbred lines based on combining ability in Striga-infested and Striga-free environments and the use of SSR markers for genotyping. Field Crop. Res. 156:48–62.CrossRefGoogle Scholar
  3. Amusan, I.O., Rich, P.J., Menkir, A., Housley, T., Ejeta, G. 2008. Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol. 178:157–166.CrossRefGoogle Scholar
  4. Andorf, C.M., Cannon, E.K., Portwood, J.L., Gardiner, J.M., Harper, L.C., Schaeffer, M.L., Braun, B.L., Campbell, D.A., Vinnakota, A.G., Sribalusu, V.V. 2015. MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res. 44:D1195–D1201.CrossRefGoogle Scholar
  5. Bantte, K., Prasanna, B. 2003. Simple sequence repeat polymorphism in Quality Protein Maize (QPM) lines. Euphytica 129:337–344.CrossRefGoogle Scholar
  6. Barcaccia, G., Lucchin, M., Parrini, P. 2003. Characterization of a flint maize (Zea mays var. indurata) Italian landrace, II. Genetic diversity and relatedness assessed by SSR and Inter-SSR molecular markers. Genet. Resour. Crop Ev. 50:253–271.CrossRefGoogle Scholar
  7. CIMMYT. 2005. Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory Mexico, D.F.: CIMMYT.Google Scholar
  8. Ejeta, G. 2005. Integrating biotechnology, breeding, and agronomy in the control of the parasitic weed Striga spp in sorghum. In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution Tuberosa, R., Phillips, R.L., Gale. M. (eds) Bologna, Italy. pp. 239–251.Google Scholar
  9. Enoki, H., Sato, H., Koinuma, K. 2002. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor. Appl. Genet. 104:1270–1277.CrossRefGoogle Scholar
  10. Gonzaga, Z.J., Aslam, K., Septiningsih, E.M., Collard, B.C. 2015. Evaluation of SSR and SNP markers for molecular breeding in rice. Plant breeding and biotechnology 3:139–152.CrossRefGoogle Scholar
  11. Govindaraj, M., Vetriventhan, M., Srinivasan, M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics research international 2015.Google Scholar
  12. Haussmann, B., Hess, D., Reddy, B., Mukuru, S., Kayentao, M., Welz, H., Geiger, H. 2001. Pattern analysis of genotype× environment interaction for striga resistance and grain yield in African sorghum trials. Euphytica 122:297–308.CrossRefGoogle Scholar
  13. Karaya, H., Njoroge, K., Mugo, S., Ariga, E., Kanampiu, F., Nderitu, J. 2012. Determination of levels of Striga germination stimulants for maize gene bank accessions and elite inbred lines. International Journal of Plant Production. 6:209–224.Google Scholar
  14. Kashiani, P., Saleh, G., Panandam, J.M., Abdullah, N.A.P., Selamat, A. 2012. Molecular characterization of tropical sweet corn inbred lines using microsatellite markers. Maydica 57:154–163.Google Scholar
  15. Menkir, A., Badu-Apraku, B., Yallou, C.G., Kamara, A.Y., Ejeta, G. 2007. Breeding maize for broad-based resistance to Striga hermonthica Singapore: World Scientific Publishing.Google Scholar
  16. Mohamed, A.H., Housley, T., Ejeta, G. 2010. An in vitro technique for studying specific Striga resistance mechanisms in sorghum. Afr. J. Agr. Res. 5:1868–1875.Google Scholar
  17. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.PubMedPubMedCentralGoogle Scholar
  18. Noldin Almiron, O.J. 2008. Análisis multivariante de la colección nuclear de la raza Avati Morotî de Paraguay. DEA en agronomía Universidad de Vigo, España.Google Scholar
  19. Nyaligwa, L., Hussein, S., Amelework, B., Ghebrehiwot, H. 2015. Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica 60:M29.Google Scholar
  20. Patto, M.V., Satovic, Z., Pego, S., Fevereiro, P. 2004. Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers. Euphytica 137:63–72.CrossRefGoogle Scholar
  21. Peakall, P., Smouse, R. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539.CrossRefGoogle Scholar
  22. Perrier, X., Jacquemoud-Collet, J.P. 2006. DARwin software. http://www.darwin.cirad.frdarwin.html. Accessed 8 March 2018.
  23. Porebski, S., Bailey, L.G., Baum, B.R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15:8–15.CrossRefGoogle Scholar
  24. Prasanna, B., Babu, R., Nair, S., Semagn, K., Chaikam, V., Cairns, J., Zhang, X., Xu, Y., Olsen, M. 2014. Molecular marker-assisted breeding for tropical maize improvement. Genetics, genomics and breeding of maize CRC Press. United Kingdom, London. pp. 89–119.Google Scholar
  25. Ranum, P., Peña-Rosas, J.P., Garcia-Casal, M.N. 2014. Global maize production, utilization, and consumption. Ann. NY. Acad. Sci. 1312:105–112.CrossRefGoogle Scholar
  26. Shayanowako, A.T., Laing, M., Shimelis, H., Mwadzingeni, L. 2017. Resistance breeding and biocontrol of Striga asiatica (L.) Kuntze in maize: a review. Acta. Agric. Scand. Sect. B. Soil Plant Sci. 67:1–11.Google Scholar
  27. Smith, J., Chin, E., Shu, H., Smith, O., Wall, S., Senior, M., Mitchell, S., Kresovich, S., Ziegle, J. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95:163–173.CrossRefGoogle Scholar
  28. Warburton, M., Reif, J., Frisch, M., Bohn, M., Bedoya, C., Xia, X., Crossa, J., Franco, J., Hoisington, D., Pixley, K. 2008. Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci. 48:617–624.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. I. T. Shayanowako
    • 1
    Email author
  • H. Shimelis
    • 1
  • M. D. Laing
    • 1
  • L. Mwadzingeni
    • 1
  1. 1.School of Agricultural, Earth and Environmental SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations