Optimizing callus induction and proliferation for Agrobacterium-mediated transformation of Brachypodium distachyon

Abstract

Brachypodium distachyon has emerged as the model species for important temperate grass crops such as wheat and barley and the genome of the B. distachyon community inbred line Bd21 has been sequenced. Methods for tissue culture and Agrobacterium-mediated transformation have been developed for this model grass as a resource for reverse genetics and functional genomic analyses. In order to obtain a high quantity and quality of compact embryogenic callus (CEC) in B. distachyon, it is important to examine and optimize the optimal concentration of the auxin 2,4-D (dichlorophenoxyacetic acid) to use in both callus induction and callus proliferation media. Here, we investigated the effects of different concentrations of 2,4-D on callus induction and callus proliferation of B. distachyon Bd21. Our results showed that 2.5 mg l−1 2,4-D is an optimal concentration to use for both callus induction and proliferation, although 5.0 mg l−1 may also be used for callus proliferation. Additionally, the suitability of hygromycin or bialaphos as selectable markers was examined and results indicated that hygromycin is significantly more efficient than bialaphos when using the Agrobacterium-mediated transformation system.

References

  1. Alves, S.C., Worland, B., Thole, V., Snape, J.W., Bevan, M.W., Vain, P. 2009. A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat. Protoc. 4:638–649.

    CAS  Article  Google Scholar 

  2. An, T., Cai, Y, Zhao, S., Zhou, J., Song, B., Bux, H., Qi, X. 2016. Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust. Sci. Rep. 6:25510.

    CAS  Article  Google Scholar 

  3. Bragg, J.N., Anderton, A., Nieu, R., Vogel, J.P. 2015. Brachypodium distachyon. In: Wang, K. (ed), Agrobacterium Protocols. Springer. New York, USA. pp. 17–33.

    Google Scholar 

  4. Bragg, J.N., Wu, J., Gordon, S.P., Guttman, M.E., Thilmony, R., Lazo, G.R., Gu, Y.Q, Vogel, J.P., 2012. Generation and characterization of the western regional research center Brachypodium T-DNA insertional mutant collection. PLoS ONE 7:e41916.

    CAS  Article  Google Scholar 

  5. Bablak, P., Draper, J., Davey, M.R., Lynch, P.T. 1995. Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell Tiss. Org. 42:97–107.

    Article  Google Scholar 

  6. Cheng, M., Hu, T., Layton, J., Liu, C.N., Fry, J.E. 2003. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev.-Pl. 39:595–604.

    CAS  Article  Google Scholar 

  7. Cheng, M., Lowe, B.A., Spencer, T.M., Ye, X., Armstrong, C.L. 2004. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell. Dev.- Pl. 40:31–45.

    Article  Google Scholar 

  8. Christiansen, P., Andersen, C.H., Didion, T., Folling, M., Nielsen, K.K. 2005. A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep. 23:751–758.

    CAS  Article  Google Scholar 

  9. Collier, R., Bragg, J., Hernandez, B.T., Vogel, J.P., Thilmony, R. 2016. Use of Agrobacterium rhizogenes strain 18r12v and paromomycin selection for transformation of Brachypodium distachyon and Brachypodium sylvaticum. Front. Plant Sci. 7:716.

    Article  Google Scholar 

  10. Draper, J., Mur, L.A., Jenkins, G., Ghosh-Biswas, G.C., Bablak, P., Hasterok, R., Routledge, A.P. 2001. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127:1539–1555.

    CAS  PubMed  Google Scholar 

  11. Eamens, A.L., Blanchard, C.L., Dennis, E.S., Upadhyaya, N.M. 2004. A bidirectional gene trap construct suitable for T-DNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnol. J. 2:367–380.

    CAS  Article  Google Scholar 

  12. Garvin, D., Gu, Y., Hasterok, R., Hazen, S., Jenkins, G., Mockler, T., Mur, L., Vogel, J. 2008. Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci. 48:S69–S84.

    Article  Google Scholar 

  13. Hanahan, D. 1983. Studies on the transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580.

    CAS  Article  Google Scholar 

  14. Hunt, D., Chambers, J.P., Behpouri, A., Kelly, S.P., Whelan, L., Piettrzykowska, M., Downey, F., Mccabe, P.F., Ng, C.K.Y. 2014. Brachypodium distachyon cell suspension cultures: establishment and utilization. Cereal Res. Commun. 42:58–69.

    CAS  Article  Google Scholar 

  15. Lee, M.B., Jeon, W.B., Kim, D.Y., Bold, O., Hong, M.J., Lee, Y.J., Park, J.H., Seo, Y.W. 2011. Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21 with two binary vectors containing hygromycin resistance and GUS reporter genes. J. Crop Sci. Biotechnol. 14:233–238.

    Article  Google Scholar 

  16. Mohammadhassan, R., Kashefi, B., Shabanzadeh, Delcheh, K. 2014. Agrobacterium-based vectors: a review. Intl. J. Farm. Allied Sci. 3:1002–1008.

    Google Scholar 

  17. Păcurar, D.I., Thordal-Christensen, H., Nielsen, K.K., Lenk, I. 2008. A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res. 17:965–975.

    Article  Google Scholar 

  18. Perochon, A., Jianguang, J., Kahla, A., Arunachalam, C., Scofield, S.R., Bowden, S., Wallington, E., Doohan, F.M. 2015. TaFROG encodes a pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus Fusarium graminearum. Plant Physiol. 169:2895–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Steinwand, M.A., Young, H.A., Bragg, J.N., Tobias, C.M., Vogel, J.P. 2013. Brachypodium sylvaticum, a model for perennial grasses: transformation and inbred line development. PLoS ONE 8:e75180.

    CAS  Article  Google Scholar 

  20. The International Brachypodium Initiative. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768.

    Article  Google Scholar 

  21. Thole, V., Peraldi, A., Worland, B., Nicholson, P., Doonan, J.H., Vain, P. 2011. T-DNA mutagenesis in BrachyIpodium distachyon. J. Exp. Bot. 63:567–576.

    Article  Google Scholar 

  22. Thole, V., Vain, P. 2012. Agrobacterium-mediated transformation of Brachypodium distachyon. Transg. Plants 847:137–149.

    CAS  Article  Google Scholar 

  23. Vain, P., Thole, V. 2009. Gene Insertion Patterns and Sites. In: Jones, H.D., Shewry, P.R. (eds), Transgenic Wheat, Barley and Oats: Production and Characterization Protocols Humana Press. Totowa, NJ, USA. pp. 203–226.

    Google Scholar 

  24. Vain, P., Worland, B., Thole, V., McKenzie, N., Alves, S.C., Opanowicz, M., Fish, L.J., Bevan, M.W., Snape, J.W. 2008. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol. J. 6:236–245.

    CAS  Article  Google Scholar 

  25. Vogel, J.P., Gu, Y.Q., Twigg, P., Lazo, G.R., Laudencia-Chingcuanco, D., Hayden, D.M., Donze, T.J., Vivian, L.A., Stamova, B., Coleman-Derr, D. 2006a. EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor. Appl. Genet. 113:186–195.

    CAS  Article  Google Scholar 

  26. Vogel, J.P., Hill, T. 2008. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 27:471–478.

    CAS  Article  Google Scholar 

  27. Vogel, J.P., Garvin, D.F., Leong, O.M., Hayden, D.M. 2006b. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss. Org. 84:199–211.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Behpouri.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behpouri, A., Perochon, A., Doohan, F.M. et al. Optimizing callus induction and proliferation for Agrobacterium-mediated transformation of Brachypodium distachyon. CEREAL RESEARCH COMMUNICATIONS 46, 221–231 (2018). https://doi.org/10.1556/0806.46.2018.04

Download citation

Keywords

  • Brachypodium distachyon
  • immature embryos
  • callus induction and proliferation
  • Agrobacterium-mediated transformation
  • selectable marker