Cereal Research Communications

, Volume 46, Issue 3, pp 510–520 | Cite as

Molecular Detection of Glutenin and Gliadin Genes in the Domesticated and Wild Relatives of Wheat using Allele-specific Markers

  • J. AhmadiEmail author
  • A. Pour-Aboughadareh
  • S. Fabriki-Ourang
  • A. A. Mehrabi


Glutenin and gliadin subunits play a key role in flour processing quality by network formation in dough. Wild relatives of crops have served as a pool of genetic variation for decades. In this study, 180 accessions from 12 domesticated and wild relatives of wheat were characterized for the glutenin and gliadin genes with allele-specific molecular markers. A total of 24 alleles were detected for the Glu-A3 and Gli-2A loci, which out of 19 amplified products identified as new alleles. Analysis of molecular variance (AMOVA) indicated that 90 and 65% of the genetic diversity were partitioned within two Aegilops and Triticum genera and their species, respectively. Furthermore, all glutenin and gliadin analyzed loci were polymorphic, indicating large genetic diversity within and between the wild species. Our results revealed that allelic variation of Glu-3A and Gli-As.2 is linked to genomic constitutions so that, Ae. caudata (C genome), Ae. neglecta (UM genome), Ae. umbellulata (U genome) and T. urartu (Au genome) harbor wide variation in the studied subunits. Hence, these species can be used in wheat quality breeding programs.


Aegilops Triticum glutenin gliadin allelic diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4603510_MOESM1_ESM.pdf (232 kb)
Supplementary material, approximately 238 KB.


  1. Aguiriano, E., Ruiz, M., Fite, R., Carrillo, J.M. 2006. Analysis of genetic variability in a sample of the durum wheat (Triticum durum Desf.) Spanish collection based on gliadin markers. Genet. Resour. Crop. Evol. 53:1543–1552.CrossRefGoogle Scholar
  2. Ahmadi, J., Pour-Aboughadareh, A. 2015. Allelic variation of glutenin and gliadin genes in Iranian einkorn wheat. Bio Env Sci. 7:168–179.Google Scholar
  3. Ahmadpoor, F., Asghari-Zakaria, R., Firoozi, B., Shahbazi, H. 2014. Investigation of diversity in Aegilops biuncialis and Aegilops umbellulata by A-PAGE. Nat. Prod. Res. 28:1626–1636.CrossRefGoogle Scholar
  4. An, X., Zhang, Q., Yan, Y., Li, Q., Zhang, Y., Wang, A., Pei, Y., Tian, J., Wang, H., Hsam, S.L.K., Zeller, F.J. 2006. Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor. Appl. Genet. 113:383–395.CrossRefGoogle Scholar
  5. Caballero, L., Martin, M.A., Alvarez, J.B. 2008. Allelic variation for the high- and low-molecular-weight glutenin subunits in wild diploid wheat (Triticum urartu) and its comparison with durum wheats. Aust. J. Agric. Res. 59:906–910.CrossRefGoogle Scholar
  6. Cuesta, S., Alvarez, J.B., Guzman, C. 2017. Identification and molecular characterization of novel LMW-m and –s glutenin genes, and a chimeric–m/-I glutenin gene in 1A chromosome of three diploid Triticum species. J. Cereal. Sci. 74:46–55.CrossRefGoogle Scholar
  7. Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical. Bulletin. 19:11–15.Google Scholar
  8. Huang, Z., Long, H., Wei, Y.M., Yan, Z.H., Zheng, Y.L. 2016. Allelic variations of α-gliadin genes from species of Aegilops section Sitopsis and insights into evolution of α-gliadin multigene family among Triticum and Aegilops. Genetica. 144:213–222.CrossRefGoogle Scholar
  9. Jiang, C., Pei, Y., Zhang, Y., Li, X., Yao, D., Yan, Y., Ma, W., Hsam, S.L.K., Zeller, F.J. 2008. Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas. 145:92–98.CrossRefGoogle Scholar
  10. Jin, H., Yan, J., Pena, R.J., Xia, X.C., Morgounov, A., Han, L.M., Zhang, Y., He, Z.H. 2011. Molecular detection of high- and low-molecular-weight glutenin subunit genes in common wheat cultivars from 20 countries using allele-specific markers. Crop. Pasture. Sci. 62:746–754.CrossRefGoogle Scholar
  11. Kawaura, K., Mochida, K., Ogihara, Y. 2005. Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant. Physiol. 139:1870–1880.CrossRefGoogle Scholar
  12. Kimber, G., Feldman, M. 1987. Wild wheat. An introduction. Special Report No. 353, Missouri, College of Agriculture, University of Missouri-Columbia.Google Scholar
  13. Lee, J.Y., Beom, H.R., Altenbach, S.B., Lim, S.H., Kim, Y.T., Kang, C.S., Yoon, U.H., Gupta, R., Kim, S.T., Ahn, S.N., Kim, Y.M. 2016. Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety. Funct. Integr. Genomics. 16:269–279.CrossRefGoogle Scholar
  14. Li, J., Wang, S.L., Cao, M., Lv, D.W., Subburaj, S., Li, X.H., Zeller, F.J., Hsam, S.L.K., Yan, Y.M. 2013. Cloning, expression, and evolutionary analysis of a-gliadin genes from and genomes. J. Appl. Genet. 54:157–167.CrossRefGoogle Scholar
  15. Long, H., Wei, Y., Yan, Z.H., Baum, B., Nevo, E. 2005. Composition, variation, expression and evolution of low-molecular-weight glutenin subunit genes in Triticum urartu. BMC Plant. Biol. 15:322Google Scholar
  16. Luo, G., Zhang, X., Zhang, Y., Yang, W., Li, Y., Sun, J., Zhan, K., Zhang, A., Liu, D. 2015. Composition, variation, expression and evolution of low-molecular-weight glutenin subunit genes in Triticum urartu. BMC Plant. Biol. 15:322Google Scholar
  17. Ma, Z.C., Wei, Y.M., Long, H., Yan, Z.H., Baum, B., Zheng, Y.L. 2006. Characterization of low-molecular-weight i-type glutenin subunit genes from diploid wheat in relation to the gene family structure. Mol. Biol. 40:897–906.CrossRefGoogle Scholar
  18. Payne, I.P., Jackson, E.A., Holt, L.M., Law, C.N. 1984. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and 1B in wheat. Theor. Appl. Genet. 67:235–243.CrossRefGoogle Scholar
  19. Payne, P.I., Nightingale, M.A., Krattiger, A.F., Holt, L.M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food. Agr. 40:51–65.CrossRefGoogle Scholar
  20. Peakall, R., Smouse, P.E. 2006. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6:288–295.Google Scholar
  21. Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Etminan, A., Moghaddam, M., Siddique, K.H.M. 2017a. Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta. Physiol. Plant. 39:106CrossRefGoogle Scholar
  22. Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Moghaddam, M., Etminan, A. 2017b. Evaluation of agromorphological diversity in wild relatives of wheat collected in Iran. J. Agr. Sci. Tech. 19:943–956.Google Scholar
  23. Pour-Aboughadareh, A., Mahmoudi, M., Moghaddam, M., Ahmadi, J., Mehrabi, A.A., Alavikia, S.S. 2017c. Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet. Resour. Crop. Evol. 64:545–556.CrossRefGoogle Scholar
  24. Van Slageren, M.W. 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae). Wageningen Agricultural University Papers. Wageningen, The Netherlands.Google Scholar
  25. Wan, Y., Wang, D., Shewry, P.R., Halford, N.G. 2002. Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrica. Theor. Appl. Genet. 104:828–839.CrossRefGoogle Scholar
  26. Wang, L., Li, G., Penea, R.J., Xia, X., He, Z. 2010. Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). J. Cereal. Sci. 51:305–312.CrossRefGoogle Scholar
  27. Wang, L.H., Zhao, X.L., He, Z.H., Ma, W., Appels, R., Peña, R.J., Xia, X.C. 2009. Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 118:525–539.CrossRefGoogle Scholar
  28. Xu, S.S., Khan, K., Klindworth, D.L., Nygard, G. 2010. Evaluation and characterization of high-molecular weight 1D glutenin subunits from Aegilops tauschii in synthetic hexaploid wheats. J. Cereal. Sci. 52:333–336.CrossRefGoogle Scholar
  29. Zhang, X., Liu, D., Zhang, J., Jiang, W., Luo, G., Yang, W., Sun, J., Tong, Y., Cui, D., Zhang, A. 2013. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat. J. Exp. Bot. 64:2027–2040.CrossRefGoogle Scholar
  30. Zhang, X.F., Jin, H., Zhang, Y., Liu, D.C., Li, G.Y., Xia, X.C., He, Z.H., Zhang, A.M. 2012. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biol. 12:243CrossRefGoogle Scholar
  31. Zhang, Y., Luo, G., Liu, D., Wang, D., Yang, W., Sun, J., Zhang, A., Zhan, K. 2015. Genome, transcriptome-and proteome-wide analyses of the gliadin gene families in Triticumurartu. PLoS One. 10:e0131559.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • J. Ahmadi
    • 1
    Email author
  • A. Pour-Aboughadareh
    • 1
  • S. Fabriki-Ourang
    • 1
  • A. A. Mehrabi
    • 2
  1. 1.Department of Genetics and Plant BreedingImam Khomeini International UniversityQazvinIran
  2. 2.Department of Agronomy and Plant BreedingIlam UniversityIlamIran

Personalised recommendations