Cyclic Hydroxamic Acid Content and its Temporal Changes in Five Commercial Maize (Zea Mays) Hybrids

Abstract

The concentration (in mg kg–1 fresh weight) of two main hydroxamates, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), and their temporal changes were simultaneously investigated using HPLC analysis in the leaves and roots of five Pioneer® maize (Zea mays L.) hybrids to select hybrids with higher hydroxamate contents. Although significant differences were found among hybrids in leaves, youngest leaves and roots, none of them showed unambiguously higher hydroxamate contents. However, the age of the organs and the plants significantly affected hydroxamate content. DIMBOA content of leaves decreased with increasing organ and plant age. DIBOA content varied among the hybrids, but generally decreased in the initial phase and then increased. In the roots, DIMBOA content decreased during the 21-day study and although DIBOA content did not show a clear temporal tendency, differences among hybrids were detected. According to current results, hydroxamate content temporally decreases in hybrid-specific patterns, which should be considered when establishing a proper sampling time frame.

References

  1. Abel, C.A., Berhow, M.A., Wilson, R.L., Binder, B.F., Hibbard, B.E. 2000. Evaluation of conventional resistance to European corn borer (Lepidoptera: Crambidae) and western corn rootworm (Coleoptera: Chrysomelidae) in experimental maize lines developed from a backcross breeding program. J. Econ. Entomol. 93:1814–1821.

    CAS  Article  Google Scholar 

  2. Assabgui, R.A., Arnason, J.T., Hamilton, R.I. 1993. Hydroxamic acid content in maize (Zea mays) roots of 18 Ontario recommended hybrids and prediction of antibiosis to the western cornrootworm, Diabrotica virgifera virgifera LeConte (Coleoptera, Chrysomelidae). Can. J. Plant Sci. 73:359–363.

    Article  Google Scholar 

  3. Assabgui, R.A., Hamilton, R.I., Arnason, J.T. 1995a. Hydroxamic acid content and plant development of maize (Zea mays L) in relation to damage by the western corn rootworm, Diabrotica virgifera virgifera LeConte Can. J. Plant Sci. 75:851–856.

    CAS  Google Scholar 

  4. Assabgui, R.A., Arnason, J.T., Hamilton, R.I. 1995b. Field evaluations of hydroxamic acids as antibiosis factors in elite maize inbreds to the Western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 88:1482–1493.

    CAS  Article  Google Scholar 

  5. Barry, D., Alfaro, D., Darrah, L.L. 1994. Relation of European corn borer leaf-feeding resistance and DIMBOA content in maize. Environ. Entomol. 23:177–182.

    Article  Google Scholar 

  6. Cambier, V., Hance T., Hoffmann, E. 2000. Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochem. 53:223–229.

    CAS  Article  Google Scholar 

  7. Copaja, S.V., Niemeyer, H.M., Wratten, S.D. 1991. Hydroxamic acid levels in Chilean and British wheat seedlings. Ann. Appl. Biol. 118:223–227.

    CAS  Article  Google Scholar 

  8. Copaja, S.V., Villarroel, E., Bravo, H.R., Pizarro, L., Argandona V.H. 2006. Hydroxamic acids in Secale cereale L. and the relationship with their antifeedant and allelopathic properties. Z. Naturforsch. C 61:670–676.

    CAS  Article  Google Scholar 

  9. Elek, H., Smart, L., Martin, J., Ahmad, S., Gordon-Weeks, R., Anda, A., Welham, S., Werner, P., Pickett, J. 2013. Hydroxamic acids in Aegilops species and effect on Rophalosiphum padi behavior and fecundity. Bull.Insectol. 66(2):213–220.

    Google Scholar 

  10. Gianoli, E., Niemeyer, H.M. 1997. Lack of costs of herbivory-induced defenses in a wild wheat: integration of physiological and ecological approaches. Oikos 80:269–275.

    Article  Google Scholar 

  11. Gutierrez, C., Castanera, P., Torres, V. 1988. Wound-induced changes in DIMBOA (2,4-dihydroxy-7-methoxy- 2H-1,4-benzoxazin-3(4H)-one) concentration in maize plants caused by Sesamia nonagrioides (Lepidoptera: Noctuidae). Ann. Appl. Biol. 113(3):447–454.

    CAS  Article  Google Scholar 

  12. Hartenstein, H., Lipmann, T., Sicker, D. 1992. An efficient procedure for the isolation of pure 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) from maize. Indian J. Heterocycl. Chem. 2:75–76.

    CAS  Google Scholar 

  13. Ketskeméty, L., Izsó, L., Könyves-Tóth, E. 2011. Introduction to the IBM SPSS Statistics software system. Artéria Stúdió Kft; Budapest, Hungary: 576 pp. (In Hungarian)

    Google Scholar 

  14. Long, B.J., Dunn, G.M., Routley, G. 1974. Rapid procedure for estimating cyclic hydroxamate (DIMBOA) concentration in maize. Crop Sci. 14:601–603.

    CAS  Article  Google Scholar 

  15. Lyons, P.C., Hipskind, J.D., Wood, K.V., Nickolson, R.L. 1988. Separation and quantification of cyclic hydroxamic acids and related compounds by high-pressure liquid chromatography. J. Agric. Food Chem. 36:57–60.

    CAS  Article  Google Scholar 

  16. Makleit P., Nagy, A., Székács, A., Fónagy, A. 2012. Comparison of Pioneer maize hybrids’ cyclic hydroxamic acid contents. (In Hungarian with English abstract) Növénytermelés 61(4):107–118.

    Google Scholar 

  17. McMullen, M.D., Frey, M., Degenh, J. 2009. Genetics and Biochemistry of Insect Resistance in Maize. In: Bennetzen J.L., Hake, S.C. (eds). Handbook of Maize: Its Biology. Springer Science Business Media, Germany. pp. 271–289.

    Google Scholar 

  18. Meihls L.N., Kaur, H., Jander, G. 2012. Natural variation in maize defense against insect herbivores. Cold Spring Harbor Symposia on Quantitative Biology 77, 269–283. Originally published online December 6, 2012. Access the recent version: doi:10.1101/sqb.2012.77.014662.

  19. Morse, S., Wratten, S.D., Edwards, P.J., Niemeyer, H.M. 1991. Changes in the hydroxamic acid content of maize leaves with time and after artificial damage; implications for insect attack. Ann. Appl. Biol. 119:239–249.

    CAS  Article  Google Scholar 

  20. Nagy, L., Nagy, L.G., Makleit, P. 2013. Cyclic hydroxamic acid content of maize hybrids measured by HPLC-method. Poster presented at: 48th Croatian and 8th International Symposium of Agriculture. Osijek, Croatia. 2013.02.17–22.

    Google Scholar 

  21. Niemeyer, H.M. 2009. Hydroxamic acids derived from 2-Hydroxy-2H-1,4-Benzoxazin-3(4H)-one: key defense chemicals of cereals. J. Agric. Food Chem. 57(5):1677–1696.

    CAS  Article  Google Scholar 

  22. Reberg-Horton, S.C., Burton, S.C., Danehower, D.A., Ma, G.Y., Monks, D.W., Murphy, J.P., Ranells, N.N., Williamson, J.D., Creamer, N.G. 2005. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J. Chem. Ecol. 31:179–193.

    CAS  Article  Google Scholar 

  23. Reiczigel, J., Harnos, A., Solymosi, N. 2007. Biostatistics for not professional statisticians. Pars Kft. Nagykovácsi, Hungary: 1–455. pp. (In Hungarian)

    Google Scholar 

  24. Reid, L.M., Arnason, J.T., Nozzolillo, C., Hamilton, R.I. 1991. Laboratory and field-resistance to the European corn borer in maize germplasm. Crop Sci. 31:1496–1502.

    Article  Google Scholar 

  25. Sytykiewicz, H. 2014. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings. PLoS One 9(4): e94847. DOI:10.1371/journal.pone.0094847.

    Article  Google Scholar 

  26. Sytykiewicz, H., Chrzanowski, G., Czerniewicz, P., Sprawka, I., Łukasik, I., Goławska, S., Sempruch, C. 2014. Expression profiling of glutathione transferase genes in Zea mays (L.) seedlings infested by cereal aphids. PLoS One 9(11): e111863. DOI:10.1371/journal.pone.0111863.

    Article  Google Scholar 

  27. Sytykiewicz, H. 2016. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids. Biochem. Biophys. Res. Commun., 476: 90–95. DOI: 10.1016/j.bbrc.2016.05.050.

    CAS  Article  Google Scholar 

  28. Toldiné Tóth, É. 1984. Relationship between DIMBOA content and Helmisthosporium turcicum resistance in maize. Növénytermelés 33:213–218.

    Google Scholar 

  29. Treeby, M., Marschner, H., Römheld, V. 1989. Mobilisation of iron and other micronutrient cations from a calcareous soil by plant borne, microbial and synthetic chelators. Plant and Soil 114:217–226.

    CAS  Article  Google Scholar 

  30. Wu, H.W., Haig, T., Pratley, J., Lemerle, D., An, M. 2001. Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. J. Chem. Ecol. 27:1691–1700.

    CAS  Article  Google Scholar 

  31. Xie, Y.S., Arnason, J.T., Philogéne, B.J.R., Atkinson, J., Morand, P. 1991a Distribution and variation of hydroxamic acids and related compounds in maize (Zea mays) root system. Can. J. Bot. 69(3):677–681.

    CAS  Article  Google Scholar 

  32. Xie, Y.S., Atkinson, J., Arnason, J.T., Morand, P., Philogene, B.J.R. 1991b. Separation and quantification of 1,4-benzoxazin-3-ones and benzoxazolin-2-ones in maize root extract by highperformance liquid chromatography. J. Chromatogr. 543:389–395.

    CAS  Article  Google Scholar 

  33. Xie, Y.S., Arnason, J.T., Philogene, B.J.R., Olechowski H.T., Hamilton, R.I. 1992. Variation of hydroxamic acid content in maize roots in relation to geographic origin of maize germplasm and resistance to western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 85:2478–2485.

    CAS  Article  Google Scholar 

  34. Zuniga, G.E., Massardo, F. 1991. Hydroxamic acid content in undifferentiated and differentiated tissues of wheat. Phytochem. 30:3281–3283.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Makleit.

Additional information

Communicated by S. Gottwald

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makleit, P., Nagy, A., Veres, S. et al. Cyclic Hydroxamic Acid Content and its Temporal Changes in Five Commercial Maize (Zea Mays) Hybrids. CEREAL RESEARCH COMMUNICATIONS 46, 686–696 (2018). https://doi.org/10.1556/0806.46.2018.035

Download citation

Keywords

  • DIMBOA
  • DIBOA
  • effect of plant age
  • effect of organ age
  • Pioneer® maize Hybrids