Advertisement

Cereal Research Communications

, Volume 46, Issue 4, pp 686–696 | Cite as

Cyclic Hydroxamic Acid Content and its Temporal Changes in Five Commercial Maize (Zea Mays) Hybrids

  • P. MakleitEmail author
  • A. Nagy
  • S. Veres
  • A. Fónagy
Article

Abstract

The concentration (in mg kg–1 fresh weight) of two main hydroxamates, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), and their temporal changes were simultaneously investigated using HPLC analysis in the leaves and roots of five Pioneer® maize (Zea mays L.) hybrids to select hybrids with higher hydroxamate contents. Although significant differences were found among hybrids in leaves, youngest leaves and roots, none of them showed unambiguously higher hydroxamate contents. However, the age of the organs and the plants significantly affected hydroxamate content. DIMBOA content of leaves decreased with increasing organ and plant age. DIBOA content varied among the hybrids, but generally decreased in the initial phase and then increased. In the roots, DIMBOA content decreased during the 21-day study and although DIBOA content did not show a clear temporal tendency, differences among hybrids were detected. According to current results, hydroxamate content temporally decreases in hybrid-specific patterns, which should be considered when establishing a proper sampling time frame.

Keywords

DIMBOA DIBOA effect of plant age effect of organ age Pioneer® maize Hybrids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4604686_MOESM1_ESM.pdf (396 kb)
Cyclic Hydroxamic Acid Content and its Temporal Changes in Five Commercial Maize (Zea Mays) Hybrids

References

  1. Abel, C.A., Berhow, M.A., Wilson, R.L., Binder, B.F., Hibbard, B.E. 2000. Evaluation of conventional resistance to European corn borer (Lepidoptera: Crambidae) and western corn rootworm (Coleoptera: Chrysomelidae) in experimental maize lines developed from a backcross breeding program. J. Econ. Entomol. 93:1814–1821.CrossRefGoogle Scholar
  2. Assabgui, R.A., Arnason, J.T., Hamilton, R.I. 1993. Hydroxamic acid content in maize (Zea mays) roots of 18 Ontario recommended hybrids and prediction of antibiosis to the western cornrootworm, Diabrotica virgifera virgifera LeConte (Coleoptera, Chrysomelidae). Can. J. Plant Sci. 73:359–363.CrossRefGoogle Scholar
  3. Assabgui, R.A., Hamilton, R.I., Arnason, J.T. 1995a. Hydroxamic acid content and plant development of maize (Zea mays L) in relation to damage by the western corn rootworm, Diabrotica virgifera virgifera LeConte Can. J. Plant Sci. 75:851–856.Google Scholar
  4. Assabgui, R.A., Arnason, J.T., Hamilton, R.I. 1995b. Field evaluations of hydroxamic acids as antibiosis factors in elite maize inbreds to the Western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 88:1482–1493.CrossRefGoogle Scholar
  5. Barry, D., Alfaro, D., Darrah, L.L. 1994. Relation of European corn borer leaf-feeding resistance and DIMBOA content in maize. Environ. Entomol. 23:177–182.CrossRefGoogle Scholar
  6. Cambier, V., Hance T., Hoffmann, E. 2000. Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochem. 53:223–229.CrossRefGoogle Scholar
  7. Copaja, S.V., Niemeyer, H.M., Wratten, S.D. 1991. Hydroxamic acid levels in Chilean and British wheat seedlings. Ann. Appl. Biol. 118:223–227.CrossRefGoogle Scholar
  8. Copaja, S.V., Villarroel, E., Bravo, H.R., Pizarro, L., Argandona V.H. 2006. Hydroxamic acids in Secale cereale L. and the relationship with their antifeedant and allelopathic properties. Z. Naturforsch. C 61:670–676.CrossRefGoogle Scholar
  9. Elek, H., Smart, L., Martin, J., Ahmad, S., Gordon-Weeks, R., Anda, A., Welham, S., Werner, P., Pickett, J. 2013. Hydroxamic acids in Aegilops species and effect on Rophalosiphum padi behavior and fecundity. Bull.Insectol. 66(2):213–220.Google Scholar
  10. Gianoli, E., Niemeyer, H.M. 1997. Lack of costs of herbivory-induced defenses in a wild wheat: integration of physiological and ecological approaches. Oikos 80:269–275.CrossRefGoogle Scholar
  11. Gutierrez, C., Castanera, P., Torres, V. 1988. Wound-induced changes in DIMBOA (2,4-dihydroxy-7-methoxy- 2H-1,4-benzoxazin-3(4H)-one) concentration in maize plants caused by Sesamia nonagrioides (Lepidoptera: Noctuidae). Ann. Appl. Biol. 113(3):447–454.CrossRefGoogle Scholar
  12. Hartenstein, H., Lipmann, T., Sicker, D. 1992. An efficient procedure for the isolation of pure 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) from maize. Indian J. Heterocycl. Chem. 2:75–76.Google Scholar
  13. Ketskeméty, L., Izsó, L., Könyves-Tóth, E. 2011. Introduction to the IBM SPSS Statistics software system. Artéria Stúdió Kft; Budapest, Hungary: 576 pp. (In Hungarian)Google Scholar
  14. Long, B.J., Dunn, G.M., Routley, G. 1974. Rapid procedure for estimating cyclic hydroxamate (DIMBOA) concentration in maize. Crop Sci. 14:601–603.CrossRefGoogle Scholar
  15. Lyons, P.C., Hipskind, J.D., Wood, K.V., Nickolson, R.L. 1988. Separation and quantification of cyclic hydroxamic acids and related compounds by high-pressure liquid chromatography. J. Agric. Food Chem. 36:57–60.CrossRefGoogle Scholar
  16. Makleit P., Nagy, A., Székács, A., Fónagy, A. 2012. Comparison of Pioneer maize hybrids’ cyclic hydroxamic acid contents. (In Hungarian with English abstract) Növénytermelés 61(4):107–118.Google Scholar
  17. McMullen, M.D., Frey, M., Degenh, J. 2009. Genetics and Biochemistry of Insect Resistance in Maize. In: Bennetzen J.L., Hake, S.C. (eds). Handbook of Maize: Its Biology. Springer Science Business Media, Germany. pp. 271–289.Google Scholar
  18. Meihls L.N., Kaur, H., Jander, G. 2012. Natural variation in maize defense against insect herbivores. Cold Spring Harbor Symposia on Quantitative Biology 77, 269–283. Originally published online December 6, 2012. Access the recent version: doi:10.1101/sqb.2012.77.014662.Google Scholar
  19. Morse, S., Wratten, S.D., Edwards, P.J., Niemeyer, H.M. 1991. Changes in the hydroxamic acid content of maize leaves with time and after artificial damage; implications for insect attack. Ann. Appl. Biol. 119:239–249.CrossRefGoogle Scholar
  20. Nagy, L., Nagy, L.G., Makleit, P. 2013. Cyclic hydroxamic acid content of maize hybrids measured by HPLC-method. Poster presented at: 48th Croatian and 8th International Symposium of Agriculture. Osijek, Croatia. 2013.02.17–22.Google Scholar
  21. Niemeyer, H.M. 2009. Hydroxamic acids derived from 2-Hydroxy-2H-1,4-Benzoxazin-3(4H)-one: key defense chemicals of cereals. J. Agric. Food Chem. 57(5):1677–1696.CrossRefGoogle Scholar
  22. Reberg-Horton, S.C., Burton, S.C., Danehower, D.A., Ma, G.Y., Monks, D.W., Murphy, J.P., Ranells, N.N., Williamson, J.D., Creamer, N.G. 2005. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J. Chem. Ecol. 31:179–193.CrossRefGoogle Scholar
  23. Reiczigel, J., Harnos, A., Solymosi, N. 2007. Biostatistics for not professional statisticians. Pars Kft. Nagykovácsi, Hungary: 1–455. pp. (In Hungarian)Google Scholar
  24. Reid, L.M., Arnason, J.T., Nozzolillo, C., Hamilton, R.I. 1991. Laboratory and field-resistance to the European corn borer in maize germplasm. Crop Sci. 31:1496–1502.CrossRefGoogle Scholar
  25. Sytykiewicz, H. 2014. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings. PLoS One 9(4): e94847. DOI:10.1371/journal.pone.0094847.CrossRefGoogle Scholar
  26. Sytykiewicz, H., Chrzanowski, G., Czerniewicz, P., Sprawka, I., Łukasik, I., Goławska, S., Sempruch, C. 2014. Expression profiling of glutathione transferase genes in Zea mays (L.) seedlings infested by cereal aphids. PLoS One 9(11): e111863. DOI:10.1371/journal.pone.0111863.CrossRefGoogle Scholar
  27. Sytykiewicz, H. 2016. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids. Biochem. Biophys. Res. Commun., 476: 90–95. DOI: 10.1016/j.bbrc.2016.05.050.CrossRefGoogle Scholar
  28. Toldiné Tóth, É. 1984. Relationship between DIMBOA content and Helmisthosporium turcicum resistance in maize. Növénytermelés 33:213–218.Google Scholar
  29. Treeby, M., Marschner, H., Römheld, V. 1989. Mobilisation of iron and other micronutrient cations from a calcareous soil by plant borne, microbial and synthetic chelators. Plant and Soil 114:217–226.CrossRefGoogle Scholar
  30. Wu, H.W., Haig, T., Pratley, J., Lemerle, D., An, M. 2001. Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. J. Chem. Ecol. 27:1691–1700.CrossRefGoogle Scholar
  31. Xie, Y.S., Arnason, J.T., Philogéne, B.J.R., Atkinson, J., Morand, P. 1991a Distribution and variation of hydroxamic acids and related compounds in maize (Zea mays) root system. Can. J. Bot. 69(3):677–681.CrossRefGoogle Scholar
  32. Xie, Y.S., Atkinson, J., Arnason, J.T., Morand, P., Philogene, B.J.R. 1991b. Separation and quantification of 1,4-benzoxazin-3-ones and benzoxazolin-2-ones in maize root extract by highperformance liquid chromatography. J. Chromatogr. 543:389–395.CrossRefGoogle Scholar
  33. Xie, Y.S., Arnason, J.T., Philogene, B.J.R., Olechowski H.T., Hamilton, R.I. 1992. Variation of hydroxamic acid content in maize roots in relation to geographic origin of maize germplasm and resistance to western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 85:2478–2485.CrossRefGoogle Scholar
  34. Zuniga, G.E., Massardo, F. 1991. Hydroxamic acid content in undifferentiated and differentiated tissues of wheat. Phytochem. 30:3281–3283.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  1. 1.University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental ManagementInstitute of Crop SciencesDebrecenHungary
  2. 2.University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental ManagementInstitute of Plant ProtectionDebrecenHungary
  3. 3.Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations