Advertisement

Cereal Research Communications

, Volume 46, Issue 3, pp 521–532 | Cite as

Obtaining of Winter Rye (Secale Cereale L. ssp. Cereale) Haploid Embryos through Hybridization with Maize (Zea Mays L.)

  • I. MarcińskaEmail author
  • I. Czyczyło-Mysza
  • E. Skrzypek
  • M. Warchoł
  • K. Zieliński
  • E. Dubas
Article

Abstract

The aim of this study was to determine the effect of selected factors on rye (Secale cereale L.) haploid embryo production by the wide crossing method. The study was performed on fifteen winter rye genotypes. This is the first time for rye when besides the genotype, on the enlargement of ovaries and haploid embryo production, such factors as: type of auxin analogues 2,4-dichlorophenoxyacetic acid (2,4-D), 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 4-amino-3,5,6-trichloropyridine-2-carboxylic acid (picloram), and the time between florets emasculation and pollination were investigated. All factors had a significant impact on rye ovary enlargement, however the haploid embryo formation depended only on rye genotype, not on kind of auxin and days between emasculation to pollination. In total, twenty one haploid embryos were formed by six genotypes of fifteen tested. On average, 13.86% (after 2,4-D treatment) to 20.05% (after dicamba treatment) enlarged ovaries per emasculated florets were obtained. Most of the ovaries enlarged when florets were pollinated 4 and 6 days after emasculation. Most of the haploid embryos formed when florets were pollinated 6 days after emasculation. The obtained haploid embryos did not germinate.

Keywords

auxin haploid embryo maize rye wide crossing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altpeter, F., Korzun, V. 2007. Rye. In: Pua, E.C., Davey, M.R. (eds) Biotechnology in Agriculture and Forestry, Transgenic Crops IV, vol. 59 Springer-Verlag, Berlin Heidelberg, pp. 107–117.CrossRefGoogle Scholar
  2. Altenhofer, P., Oertel, C., Matzk, F. 1997. Chromosome elimination in wide crosses of Poaceae. Current topics in plant cytogenetics related to plant improvement. International Symposium held at Tulln, Austria, February 21–22, pp. 310–317.Google Scholar
  3. Deimling, S., Flehinghaus-Roux, T., Rober, F., Schechert, A., Roux, S.R., Geiger, H.H. 1994. Doubled haploid production-now reproducible in rye. In: Abstracts VIIIth International Congress of Plant Tissue and Cell Culture, Firenze, June 12–17, p. 95.Google Scholar
  4. Deimling, S., Flehinghaus-Roux, T. 1997. Haploidy in rye. In: Jain, M.S., Sopory, S.K., Veilleux, R.E. (eds) In Vitro Haploid Production in Higher Plants. Kluwer Academic Publishers, Dordrecht, pp. 181–204.CrossRefGoogle Scholar
  5. Flehinghaus, T., Deimling, S., Geiger, H.H. 1991. Methodical improvements in rye anther culture. Plant Cell Rep. 10:397–400.CrossRefGoogle Scholar
  6. Flehinghaus-Roux, T., Deimling, S., Geiger, H.H. 1995. Anther culture ability in Secale cereale L. Plant Breed. 114:259–261.CrossRefGoogle Scholar
  7. Forster, B.P., Heberle-Bors, E., Kasha, K.J., Touraev, A. 2007. The resurgence of haploids in higher plants. Trends Plant Sci. 12:368–375.CrossRefGoogle Scholar
  8. Guo, Y.D., Pulli, S. 2000. Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Rep. 19:875–880.CrossRefGoogle Scholar
  9. Hoagland, D.R., Arnon, D.I. 1938. A water culture method for growing plants without soil. Circ. Univ. Calif., Agric. Exp. Stn., No. 347.Google Scholar
  10. Hörlein, A.J. 1991. Metodische Untersuchungen zur Antherenkultur bei Roggen. Metodische Untersuchungen zur Antherenkultur bei Roggen. Dissertation zur Erlagung des Grades eines Doktors der Agrarwissenschaften, Universität Hohenheim, Stuttgart.Google Scholar
  11. Hromada-Judycka, A., Bolibok-Brągoszewska, H., Rakoczy-Trojanowska, M. 2010. Genetically directed differential subtraction chain products related to in vitro response of immature embryos of rye (Secale cereale L.): isolation, characterization, and expression analysis Plant Cell Tiss. Org. Cult. 100:131–138.CrossRefGoogle Scholar
  12. Immonen, S. 1999. Androgenetic green plants from winter rye, Secale cereale L., of diverse origin. Plant Breeding 118:319–322.CrossRefGoogle Scholar
  13. Immonen, S., Anttila, H. 1996. Success in anther culture of tye. Proc. EUCARPIA Int. Symp. Rye Breeding & Genetics. Vortr. Pflanzenziichtg. 35:237–244.Google Scholar
  14. Immonen, S., Anttila, H. 1999. Cold pretreatment to enhance green plant regeneration from rye anther culture. Plant Cell Tiss. Org. Cult. 57:121–127.CrossRefGoogle Scholar
  15. Immonen, S., Anttila, H. 2000. Media composition and anther plating for production of androgenetic green plants from cultivated rye (Secale cereale L.). J. Plant Physiol. 156:204–210.CrossRefGoogle Scholar
  16. Karimi-Ashtiyani, R., Ishii, T., Niessen, M., Stein, N., Heckmann, S., Gurushidze, M. 2015. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Natl. Acad. Sci. U.S.A. 112:11211–11216.CrossRefGoogle Scholar
  17. Laurie, D.A., O’Donoughue, L.S., Bennett, M.D. 1990. Wheat × maize and other wide sexual hybrids: their potential for genetic manipulation and crop improvement. In: Gustafson, J.P. (ed.), Genetic manipulation in plant improvement II, Plenum Press, New York, pp. 95–126.CrossRefGoogle Scholar
  18. Ma, R., Guo, Y., Pulli, S. 2004. Comparison of anther and microspore culture in the embryogenesis and regeneration of rye. Plant Cell Tiss. Org. Cult. 76:147–157.CrossRefGoogle Scholar
  19. Mikołajczyk, S., Broda, Z., Weight, D. 2012. The effect of cold temperature stress on the viability of rye (Secale cereale L.) microspores. J. Biotech. 93(2):139–142.Google Scholar
  20. Noga A., Skrzypek, E., Warchoł, M., Czyczyło-Mysza, I., Dziurka, K., Marcińska, I., Juzoń, K., Warzecha, T., Sutkowska, A., Nita, Z., Werwińska, K. 2016. Conversion of oat (Avena sativa L.) haploid embryos into plants in relation to embryo developmental stage and regeneration media. In Vitro Cellular & Developmental Biology – Plant 52:590–597.CrossRefGoogle Scholar
  21. Ponitka, A., Ślusarkiewicz-Jarzina, A. 2004. Cleared-ovule technique used for rapid access to elary embryo development in Secale cereale x Zea mays crosses. Acta Biol. Cracov. Series Botanica 46:133–137.Google Scholar
  22. Rakoczy-Trojanowska, M., Smiech, M., Malepszy, S. 1997. The influence of genotype and medium on rye (Secale cereale L.) anther culture. Plant Cell Tiss. Org. Cult. 48:15–21.CrossRefGoogle Scholar
  23. Rubtsova, M., Gnad, H., Melzer, M., Weyen, J., Gils, M. 2013. The auxins centrophenoxine and 2,4-D differ in their effects on non-directly induced chromosome doubling in anther culture of wheat (T. aestivum L.) Plant Biotechnol. Rep. 7:247–255.CrossRefGoogle Scholar
  24. Rybczyński, J.J. 1990. Plant tissue culture of Secale: A review. Euphytica 46:57–70.CrossRefGoogle Scholar
  25. Sserumaga, J.P., Oikeh, S.O., Mugo, S., Asea, G., Otim, M., Beyene, Y., Abalo, G., Kikafunda, J. 2015. Genotype by environment interactions and agronomic performance of doubled haploids testcross maize (Zea mays L.) hybrids. Euphytica 207:353–365.CrossRefGoogle Scholar
  26. Tenhola-Roininen, T., Immonen, S., Tanhuanpää, P. 2006. Rye doubled haploids as a research and breeding tool – a practical point of view. Plant Breed. 125:584–590.CrossRefGoogle Scholar
  27. Targońska, M., Hromada-Judycka, A., Bolibok-Brągoszewska, H., Rakoczy-Trojanowska, M. 2013. The specificity and genetic background of the rye (Secale cereale L.) tissue culture response. Plant Cell. Rep. 32(1):1–9.CrossRefGoogle Scholar
  28. Thomas, E., Wenzel, G. 1975. Embryogenesis from microspores of rye. Naturwissenschaften 62:40–41.CrossRefGoogle Scholar
  29. Wenzel, G., Thomas, E. 1974. Observations on the growth in culture of anthers of Secale cereale. Z. Pflanzenzüchtg. 72:89–94.Google Scholar
  30. Wenzel, G., Hoffmann, E., Thomas, E. 1977. Increased induction and chromosome doubling of androgenetic haploid rye. Theor. Appl. Genet. 5:81–86.CrossRefGoogle Scholar
  31. Zenkteler, M., Misiura, E. 1974. Induction of androgenic embryos from cultured anthers of Hordeum, Secale, and Festuca. Biochem. Physiol. Pflanzen. 165:337–340.CrossRefGoogle Scholar
  32. Zenkteler, M., Nitzsche, W. 1984. Wide hybridization experiment in cereals. Theor. Appl. Genet. 68:311–315.CrossRefGoogle Scholar
  33. Zhuang, J.J., Xu, J. 1983. Increasing differentiation frequencies in wheat pollen callus. In: Hu, H., Vega, M.R. (eds) Cell and Tissue Culture Techniques for Cereal Crop Improvement, Science Press, Beijing, p. 431.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • I. Marcińska
    • 1
    Email author
  • I. Czyczyło-Mysza
    • 1
  • E. Skrzypek
    • 1
  • M. Warchoł
    • 1
  • K. Zieliński
    • 1
  • E. Dubas
    • 1
  1. 1.Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyCracowPoland

Personalised recommendations