Genome-wide Association Analysis of Kernel Morphology in Breeding Lines Derived from Synthetic Hexaploid Wheat in Qinghai Province, China

Abstract

Wheat kernel morphology is a very important trait for wheat yield improvement. This is the first report of association analysis of kernel morphology traits in wheat breeding lines. In Qinghai, China, the research described here involved genome-wide association analysis in breeding lines derived from synthetic hexaploid wheat with a mixed linear model to identify the quantitative trait loci (QTLs) related to kernel morphology. The 8033 effective Diversity Array Technology (DArT) markers produced a genetic map of 5901.84 cM with an average density of 1.36 markers/cM. Population structure analysis classified 507 breeding lines into three groups by Bayesian structure analysis using unlinked markers. Linkage disequilibrium decay was observed with a map coverage of 2.78 cM. Marker-trait association analysis showed that 15 DArT markers for kernel morphology were detected, located on nine chromosomes, and explained 2.6%–4.0% of the phenotypic variation of kernel area (KA), kernel width (KW), kernel length (KL) and thousand-kernel weight (TKW). The marker 1139297 was related to both the KL and KA traits. Only six DArT markers were close to known QTLs. The parent SHW-L1 carried eight favored alleles, while other seven favored alleles were derived from elite common wheat cultivars. These QTLs, identified in elite breeding lines, should help us understand the kernel morphology trait better, and to provide germ-plasm for breeding new wheat cultivars for Qinghai Province or other regions.

References

  1. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., Uszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H. 2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113:1409–1420.

    CAS  Article  Google Scholar 

  2. Bordes, J., Goudemand, E., Duchalais, L., Chevarin, L., Oury, X.F., Heumez, E., Lapierre, A., Perretant, M.R., Rolland, B., Beghin, D., Laurent, V., Gouis, J.L., Storlie, E., Robert, O., Charmet, G. 2014. Genome-wide association mapping of three important traits using bread wheat elite breeding populations. Mol. Breed. 4:755–768.

    Article  Google Scholar 

  3. Börner, A.E., Schumann, A., Fürste, H., Cöster, B., Leithold, M.S., Röder, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.

    Article  Google Scholar 

  4. Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23:2633–2635.

    CAS  Article  Google Scholar 

  5. Calderini, D.F., Reynolds, M.P., Calderini, D.F., Reynolds, M.P. 2000. Changes in grain weight as a consequence of de-graining treatmentsat pre- and post-anthesis in synthetic hexaploid wheats. Aust. J. Plant Physiol. 27:183–191.

    Google Scholar 

  6. Chen, D.Z. 1993. New progress of wheat cultivation in China. Agriculture Press, Beijing, pp. 327–340 (in Chinese).

    Google Scholar 

  7. Cui, F., Fan, X.L., Chen, M., Zhang, N., Zhao, C.H., Zhang, W., Han, J., Ji, J., Zhao, X., Yang, L., Wang, T., Li, J.M. 2015. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theor. Appl. Genet. 129:469

    Article  Google Scholar 

  8. Cui, F., Zhao, C.H., Ding, A.M., Li, J., Wang, L., Li, X.F., Bao, Y.G., Li, J.M., Wang, H.G. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor. Appl. Genet. 127:659–675.

    Article  Google Scholar 

  9. Das, M.K., Bai, G., Mujeeb-Kazi, A., Rajaram, S. 2016. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet. Resour. Crop. Ev. 63:1285–1296.

    CAS  Article  Google Scholar 

  10. Dreccer, M.F., Borgognone, M.G., Ogbonnaya, F.C., Trethowan, R.M., Winter, B. 2007. CIMMYT-selected derived synthetic bread wheats for rainfed environments: Yield evaluation in Mexico and Australia. Field Crops Res. 100:218–228.

    Article  Google Scholar 

  11. Emebiri, L.C., Ogbonnaya, F.C. 2015. Exploring the synthetic hexaploid wheat for novel sources of tolerance to excess boron. Mol. Breed. 35:1–10.

    Article  Google Scholar 

  12. Emebiri, L.C., Oliver, J.R., Mrva, K., Mares, D. 2010. Association mapping of late maturity α-amylase (LMA) activity in a collection of synthetic hexaploid wheat. Mol. Breed. 26:39–49.

    CAS  Article  Google Scholar 

  13. Evers, A.D., Cox, R.I., Shaheedullah, M.Z., Withey, R.P. 1990. Predicting milling extraction rate by image analysis of wheat grains. Aspects Appl. Biol. 25:417–426.

    Google Scholar 

  14. Flint-Garcia, S.A., Thornsberry, J.M., Buckler, E.S. 2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Physiol. 54:357–374.

    CAS  Google Scholar 

  15. Ginkel, M.V., Ogbonnaya, F. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res. 104:86–94.

    Article  Google Scholar 

  16. Hawkesford, M.J., Araus, J.L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J., Parry, M.A.J. 2013. Prospects of doubling global wheat yields. Food and Energy Security. 2:34–48.

    Article  Google Scholar 

  17. Li, J., Wan, H., Yang, W. 2014. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 52:735–742.

    Article  Google Scholar 

  18. Neumann, K., Kobiljski, B., Denčić, S., Varshney, R., Börner, A. 2011. Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed. 27:37–58.

    Article  Google Scholar 

  19. Ogbonnaya, F.C., Abdalla, O., Mujeeb-Kazi, A., Kazi, A.G., Xu, S.S., Gosman, N., Lagudah, E.S., Bonnett, D., Sorrells, M.E., Tsujimoto, H. 2013. Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. John Wiley & Sons, Inc. pp. 35–122.

    Google Scholar 

  20. Pritchard, J.K., Stephens, M., Rosenberg, N.A., Donnelly, P. 2000. Association mapping in structured populations. The American Journal of Human Genetics. 67:170–181.

    CAS  Article  Google Scholar 

  21. Rasheed, A., Xia, X.C., Ogbonnaya, F., Mahmood, T., Zhang, Z.W., Mujeeb-Kazi, A. He, Z.H. 2014. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biology. 14:128

    Article  Google Scholar 

  22. Sukumaran, S., Xiang, W., Bean, S.R., Pedersen, J.F., Kresovich, S., Tuinstra, M.R., Tesso, T.T., Hamblin, M.T., Yu, J.M. 2012. Association mapping for grain quality in a diverse sorghum collection. Plant Genome. 5:126–135.

    CAS  Article  Google Scholar 

  23. Tang, Y., Wu, X.L., Li, C.S., Yang, W.Y., Huang, M.B., Ma, X.L., Li, S.Z. 2017. Yield, growth, canopy traits and photosynthesis in high-yielding, synthetic hexaploid-derived wheats cultivars compared with non-synthetic wheats. Crop & Pasture Science 68:115–125.

    Article  Google Scholar 

  24. Wang, L.F., Ge, H.M., Hao, C.Y., Dong, Y.S., Zhang, X.Y. 2012. Identifying Loci Influencing 1,000-Kernel Weight in Wheat by Microsatellite Screening for Evidence of Selection during Breeding. PLoS One. 7:e29432.

    CAS  Article  Google Scholar 

  25. Williams, K., Munkvold, J., Sorrells, M. 2013. Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica. 190:99–116.

    Article  Google Scholar 

  26. Xiao, Y.G., Qiang, Z.G., Wu, K., Liu, J.J., Xia, X.C., Ji, W.Q., He, Z.H. 2012. Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Sci. 52:44–56.

    Article  Google Scholar 

  27. Yang, W., Liu, D., Li, J., Zhang, L., Wei, H., Hu, X., Zheng, Y., He, Z., Zou, Y. 2009. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J. Genet. Genomics. 36:539–546.

    CAS  Article  Google Scholar 

  28. Yan, L., Liang, F., Xu, H., Zhang, X., Zhai, H., Sun, Q., Ni, Z. 2017. Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheat with near-identical AABB genomes. Front. Plant Sci. 8:1705

    Article  Google Scholar 

  29. Yan, Z., Wan, Y., Liu, K., Zheng, Y., Wang, D. 2002. Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chinese Sci. Bull. 47:220–225.

    Article  Google Scholar 

  30. Yu, J., Pressoir, G., Briggs, W.H., Vroh, B.I., Yamasaki, M., Doebley, J.F., Mcmullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., Kresovich, S., Buckler, E.S. 2006. A unified mixed-model 24 method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38:203–208.

    CAS  Article  Google Scholar 

  31. Zhang, H.X., Zhang, F.N., Li, G.D., Zhang, S.N., Zhang, Z.G., Ma, L.J. 2017. Genetic diversity and association mapping of agronomic yield traits in eighty six synthetic hexaploid wheat. Euphytica, 213:111

    Article  Google Scholar 

  32. Zhang, L., Liu, D., Yan, Z., Lan, X., Zheng, Y., Zhou, Y. 2004. Rapid changes of microsatellite flanking sequence in the allopoh ploidization of new synthesized hexaploid wheat. Science in China. 47:553–561.

    CAS  Article  Google Scholar 

  33. Zhang, K.P., Wang, J.J., Zhang, L.Y., Rong, C.W., Zhao, F.W., Peng, T., Li, H.M., Cheng, D.M., Liu, X., Qin, H.J. 2013. Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS One. 8:e57853–e57853

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to W. Chen or H. Zhang.

Additional information

Communicated by A. Börner

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cao, D., Chen, W. et al. Genome-wide Association Analysis of Kernel Morphology in Breeding Lines Derived from Synthetic Hexaploid Wheat in Qinghai Province, China. CEREAL RESEARCH COMMUNICATIONS 46, 399–411 (2018). https://doi.org/10.1556/0806.46.2018.022

Download citation

Keywords

  • Genome-wide association
  • kernel morphology
  • Synthetic hexaploid wheat