Cereal Research Communications

, Volume 46, Issue 3, pp 399–411 | Cite as

Genome-wide Association Analysis of Kernel Morphology in Breeding Lines Derived from Synthetic Hexaploid Wheat in Qinghai Province, China

  • H. Wang
  • D. Cao
  • W. ChenEmail author
  • D. Liu
  • B. Liu
  • H. ZhangEmail author


Wheat kernel morphology is a very important trait for wheat yield improvement. This is the first report of association analysis of kernel morphology traits in wheat breeding lines. In Qinghai, China, the research described here involved genome-wide association analysis in breeding lines derived from synthetic hexaploid wheat with a mixed linear model to identify the quantitative trait loci (QTLs) related to kernel morphology. The 8033 effective Diversity Array Technology (DArT) markers produced a genetic map of 5901.84 cM with an average density of 1.36 markers/cM. Population structure analysis classified 507 breeding lines into three groups by Bayesian structure analysis using unlinked markers. Linkage disequilibrium decay was observed with a map coverage of 2.78 cM. Marker-trait association analysis showed that 15 DArT markers for kernel morphology were detected, located on nine chromosomes, and explained 2.6%–4.0% of the phenotypic variation of kernel area (KA), kernel width (KW), kernel length (KL) and thousand-kernel weight (TKW). The marker 1139297 was related to both the KL and KA traits. Only six DArT markers were close to known QTLs. The parent SHW-L1 carried eight favored alleles, while other seven favored alleles were derived from elite common wheat cultivars. These QTLs, identified in elite breeding lines, should help us understand the kernel morphology trait better, and to provide germ-plasm for breeding new wheat cultivars for Qinghai Province or other regions.


Genome-wide association kernel morphology Synthetic hexaploid wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4603399_MOESM1_ESM.pdf (1.7 mb)
Supplementary material, approximately 1741 KB.


  1. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., Uszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H. 2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113:1409–1420.CrossRefGoogle Scholar
  2. Bordes, J., Goudemand, E., Duchalais, L., Chevarin, L., Oury, X.F., Heumez, E., Lapierre, A., Perretant, M.R., Rolland, B., Beghin, D., Laurent, V., Gouis, J.L., Storlie, E., Robert, O., Charmet, G. 2014. Genome-wide association mapping of three important traits using bread wheat elite breeding populations. Mol. Breed. 4:755–768.CrossRefGoogle Scholar
  3. Börner, A.E., Schumann, A., Fürste, H., Cöster, B., Leithold, M.S., Röder, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.CrossRefGoogle Scholar
  4. Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23:2633–2635.CrossRefGoogle Scholar
  5. Calderini, D.F., Reynolds, M.P., Calderini, D.F., Reynolds, M.P. 2000. Changes in grain weight as a consequence of de-graining treatmentsat pre- and post-anthesis in synthetic hexaploid wheats. Aust. J. Plant Physiol. 27:183–191.Google Scholar
  6. Chen, D.Z. 1993. New progress of wheat cultivation in China. Agriculture Press, Beijing, pp. 327–340 (in Chinese).Google Scholar
  7. Cui, F., Fan, X.L., Chen, M., Zhang, N., Zhao, C.H., Zhang, W., Han, J., Ji, J., Zhao, X., Yang, L., Wang, T., Li, J.M. 2015. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theor. Appl. Genet. 129:469CrossRefGoogle Scholar
  8. Cui, F., Zhao, C.H., Ding, A.M., Li, J., Wang, L., Li, X.F., Bao, Y.G., Li, J.M., Wang, H.G. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor. Appl. Genet. 127:659–675.CrossRefGoogle Scholar
  9. Das, M.K., Bai, G., Mujeeb-Kazi, A., Rajaram, S. 2016. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet. Resour. Crop. Ev. 63:1285–1296.CrossRefGoogle Scholar
  10. Dreccer, M.F., Borgognone, M.G., Ogbonnaya, F.C., Trethowan, R.M., Winter, B. 2007. CIMMYT-selected derived synthetic bread wheats for rainfed environments: Yield evaluation in Mexico and Australia. Field Crops Res. 100:218–228.CrossRefGoogle Scholar
  11. Emebiri, L.C., Ogbonnaya, F.C. 2015. Exploring the synthetic hexaploid wheat for novel sources of tolerance to excess boron. Mol. Breed. 35:1–10.CrossRefGoogle Scholar
  12. Emebiri, L.C., Oliver, J.R., Mrva, K., Mares, D. 2010. Association mapping of late maturity α-amylase (LMA) activity in a collection of synthetic hexaploid wheat. Mol. Breed. 26:39–49.CrossRefGoogle Scholar
  13. Evers, A.D., Cox, R.I., Shaheedullah, M.Z., Withey, R.P. 1990. Predicting milling extraction rate by image analysis of wheat grains. Aspects Appl. Biol. 25:417–426.Google Scholar
  14. Flint-Garcia, S.A., Thornsberry, J.M., Buckler, E.S. 2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Physiol. 54:357–374.Google Scholar
  15. Ginkel, M.V., Ogbonnaya, F. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res. 104:86–94.CrossRefGoogle Scholar
  16. Hawkesford, M.J., Araus, J.L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J., Parry, M.A.J. 2013. Prospects of doubling global wheat yields. Food and Energy Security. 2:34–48.CrossRefGoogle Scholar
  17. Li, J., Wan, H., Yang, W. 2014. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 52:735–742.CrossRefGoogle Scholar
  18. Neumann, K., Kobiljski, B., Denčić, S., Varshney, R., Börner, A. 2011. Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed. 27:37–58.CrossRefGoogle Scholar
  19. Ogbonnaya, F.C., Abdalla, O., Mujeeb-Kazi, A., Kazi, A.G., Xu, S.S., Gosman, N., Lagudah, E.S., Bonnett, D., Sorrells, M.E., Tsujimoto, H. 2013. Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. John Wiley & Sons, Inc. pp. 35–122.Google Scholar
  20. Pritchard, J.K., Stephens, M., Rosenberg, N.A., Donnelly, P. 2000. Association mapping in structured populations. The American Journal of Human Genetics. 67:170–181.CrossRefGoogle Scholar
  21. Rasheed, A., Xia, X.C., Ogbonnaya, F., Mahmood, T., Zhang, Z.W., Mujeeb-Kazi, A. He, Z.H. 2014. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biology. 14:128CrossRefGoogle Scholar
  22. Sukumaran, S., Xiang, W., Bean, S.R., Pedersen, J.F., Kresovich, S., Tuinstra, M.R., Tesso, T.T., Hamblin, M.T., Yu, J.M. 2012. Association mapping for grain quality in a diverse sorghum collection. Plant Genome. 5:126–135.CrossRefGoogle Scholar
  23. Tang, Y., Wu, X.L., Li, C.S., Yang, W.Y., Huang, M.B., Ma, X.L., Li, S.Z. 2017. Yield, growth, canopy traits and photosynthesis in high-yielding, synthetic hexaploid-derived wheats cultivars compared with non-synthetic wheats. Crop & Pasture Science 68:115–125.CrossRefGoogle Scholar
  24. Wang, L.F., Ge, H.M., Hao, C.Y., Dong, Y.S., Zhang, X.Y. 2012. Identifying Loci Influencing 1,000-Kernel Weight in Wheat by Microsatellite Screening for Evidence of Selection during Breeding. PLoS One. 7:e29432.CrossRefGoogle Scholar
  25. Williams, K., Munkvold, J., Sorrells, M. 2013. Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica. 190:99–116.CrossRefGoogle Scholar
  26. Xiao, Y.G., Qiang, Z.G., Wu, K., Liu, J.J., Xia, X.C., Ji, W.Q., He, Z.H. 2012. Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Sci. 52:44–56.CrossRefGoogle Scholar
  27. Yang, W., Liu, D., Li, J., Zhang, L., Wei, H., Hu, X., Zheng, Y., He, Z., Zou, Y. 2009. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J. Genet. Genomics. 36:539–546.CrossRefGoogle Scholar
  28. Yan, L., Liang, F., Xu, H., Zhang, X., Zhai, H., Sun, Q., Ni, Z. 2017. Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheat with near-identical AABB genomes. Front. Plant Sci. 8:1705CrossRefGoogle Scholar
  29. Yan, Z., Wan, Y., Liu, K., Zheng, Y., Wang, D. 2002. Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chinese Sci. Bull. 47:220–225.CrossRefGoogle Scholar
  30. Yu, J., Pressoir, G., Briggs, W.H., Vroh, B.I., Yamasaki, M., Doebley, J.F., Mcmullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., Kresovich, S., Buckler, E.S. 2006. A unified mixed-model 24 method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38:203–208.CrossRefGoogle Scholar
  31. Zhang, H.X., Zhang, F.N., Li, G.D., Zhang, S.N., Zhang, Z.G., Ma, L.J. 2017. Genetic diversity and association mapping of agronomic yield traits in eighty six synthetic hexaploid wheat. Euphytica, 213:111CrossRefGoogle Scholar
  32. Zhang, L., Liu, D., Yan, Z., Lan, X., Zheng, Y., Zhou, Y. 2004. Rapid changes of microsatellite flanking sequence in the allopoh ploidization of new synthesized hexaploid wheat. Science in China. 47:553–561.CrossRefGoogle Scholar
  33. Zhang, K.P., Wang, J.J., Zhang, L.Y., Rong, C.W., Zhao, F.W., Peng, T., Li, H.M., Cheng, D.M., Liu, X., Qin, H.J. 2013. Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS One. 8:e57853–e57853CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  1. 1.Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Triticeae Research InstituteSichuan Agricultural UniversitySichuanChina
  4. 4.Key Laboratory of Adaptation and Evolution of Plateau Biota & Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina

Personalised recommendations