Advertisement

Cereal Research Communications

, Volume 46, Issue 2, pp 201–210 | Cite as

Characterization of an Expressed Triticum monococcum Glu-A1y Gene Containing a Premature Termination Codon in its C-terminal Coding Region

  • G. Chen
  • M. H. Zhang
  • X. J. Liu
  • J. Y. Fu
  • H. Y. Li
  • M. Hao
  • S. Z. Ning
  • Z. W. Yuan
  • Z. H. Yan
  • B. H. Wu
  • D. C. Liu
  • L. Q. ZhangEmail author
Article

Abstract

Premature termination codons (PTCs) are an important reason for the silence of high-molecular-weight glutenin subunits in Triticum species. Although the Glu-A1y gene is generally silent in common wheat, we here isolated an expressed Glu-A1y gene containing a PTC, named 1Ay8.3, from Triticum monococcum ssp. monococcum (AmAm, 2n = 2x = 14). Despite the presence of a PTC (TAG) at base pair positions 1879–1881 in the C-terminal coding region, this did not obviously affect 1Ay8.3 expression in seeds. This was demonstrated by the fact that when the PTC TAG of 1Ay8.3 was mutated to the CAG codon, the mutant in Escherichia coli bacterial cells expressed the same subunit as in the seeds. However, in E. coli, 1Ay8.3 containing the PTC expressed a truncated protein with faster electrophoretic mobility than that in seeds, suggesting that PTC translation termination suppression probably occurs in vivo (seeds) but not in vitro (E. coli). This may represent one of only a few reports on the PTC termination suppression phenomenon in genes.

Keywords

high-molecular-weight glutenin subunits premature termination codon termination suppression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4602201_MOESM1_ESM.pdf (335 kb)
Supplementary material, approximately 343 KB.

References

  1. Alvarez, J.B., Caballero, L., Nadal, S., Ramírez, M.C., Martín, A. 2009. Development and gluten strength evaluation of introgression lines of Triticum urartu in durum wheat. Cereal Res. Commun. 37:243–248.CrossRefGoogle Scholar
  2. Bertram, G., Innes, S., Minella, O., Richardson, J., Stansfield, I. 2001. Endless possibilities: translation termination and stop codon recognition. Microbiol. 147:255–269.CrossRefGoogle Scholar
  3. Ciaffi, M., Benedettelli, S., Giorgi, B., Porceddu, E., Lafiandra, D. 1991. Seed storage proteins of Triticum turgidum ssp. dicoccoides and their effect on the technological quality in durum wheat. Plant Breed. 107:309–319.CrossRefGoogle Scholar
  4. Dabrowski, M., Bukowy-Bieryllo, Z., Zietkiewicz, E. 2015. Translational readthrough potential of natural termination codons in eucaryotes–the impact of RNA sequence. RNA Biol. 12:950–958.CrossRefGoogle Scholar
  5. D’Ovidio, R., Masci, S., Porceddu, E. 1996. Sequence analysis of the 5′non-coding regions of active and inactive 1Ay HMW glutenin genes from wild and cultivated wheats. Plant Sci. 114:61–69.CrossRefGoogle Scholar
  6. Forde, J., Malpica, J.M., Halford, N.G. et al. 1985. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum L.). Nucleic. Acids. Res. 13:6817–6832.CrossRefGoogle Scholar
  7. Guo, X.H., Wu, B.H., Hu, X.G. et al. 2013. Molecular characterization of two y-type high molecular weight glutenin subunit alleles 1Ay12* and 1Ay8* from cultivated einkorn wheat (Triticum monococcum ssp. monococcum). Gene 516:1–7.CrossRefGoogle Scholar
  8. Harberd, N.P., Flavell, R.B., Thompson, R.D. 1987. Identification of a transposon-like insertion in a Glu-1 allele of wheat. Mol. Gen. Genet. 209:326–332.CrossRefGoogle Scholar
  9. Hogg, J.R., Goff, S.P. 2010. Upf1 senses 3’UTR length to potentiate mRNA decay. Cell 143:379–389.CrossRefGoogle Scholar
  10. Jiang, Q.T., Wei, Y.M., Wang, F. et al. 2009. Characterization and comparative analysis of HMW glutenin 1Ay alleles with differential expressions. BMC Plant Biol. 9:16.CrossRefGoogle Scholar
  11. Juhász, A., Larroque, O.R., Tamás, L. et al. 2003. Bánkúti 1201 – an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 107:697–704.CrossRefGoogle Scholar
  12. Lafiandra, D., D’Ovidio, R., Porceddu, E., Margiotta, B., Colaprico, G. 1993. New data supporting high Mr glutenin subunit 5 as determinant of quality differences among the pairs 5+10 vs. 2+12. J. Cereal Sci. 18:197–205.CrossRefGoogle Scholar
  13. Lawrence, G.J., Shepherd, K.W. 1980. Variation in glutenin protein subunits of wheat. Aust. J. Biol. Sci. 33:221–233.CrossRefGoogle Scholar
  14. Li, Z.L., Li, H.Y., Chen, G. et al. 2015. Characterization of a novel y-type HMW-GS with eight cysteine residues from Triticum monococcum ssp. monococcum. Gene. 573:110–114.CrossRefGoogle Scholar
  15. Margiotta, B., Urbano, M., Colaprico, G., et al. 1996. Detection of y-type subunit at the Glu-A1 locus in some Swedish bread wheat lines, J. Cereal Sci. 23:203–211.CrossRefGoogle Scholar
  16. Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F., Dietz, H.C. 2004. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36:1073–1078.CrossRefGoogle Scholar
  17. Payne, P.I., Nightingale, M.A., Krattiger, A.F,, Holt, L.M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40:51–65.CrossRefGoogle Scholar
  18. Rehwinkel, J., Raes, J., Izaurralde, E. 2006. Nonsense-mediated mRNA decay: target genes and functional diversification of effectors. Trends Biochem. Sci. 31:639–646.CrossRefGoogle Scholar
  19. Shewry, P.R., Halford, N.G., Belton, P.S., Tatham, A.S. 2002. The structure and properties of gluten: an elastic protein from wheat grain. Philos. Trans. Biol. Sci. 357:133–142.CrossRefGoogle Scholar
  20. Shewry, P.R., Halford, N.G., Tatham, A.S. 1992. High molecular weight subunits of wheat glutenin. J. Cereal Sci. 15:105–120.CrossRefGoogle Scholar
  21. Shu, L.B., Lou, Q.J., Ma, C.F. et al. 2011. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. J. Proteomics 11:4122–4138.CrossRefGoogle Scholar
  22. Sugiyama, N., Masuda, T., Shinoda, K. et al. 2007. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell. Proteomics 6:1103–1109.CrossRefGoogle Scholar
  23. Yan, Z.H., Wan, Y.F., Liu, K.F. et al. 2002. Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chinese Sci. Bull. 47:220–225.CrossRefGoogle Scholar
  24. Yoo, S.D., Cho, Y.H., Sheen, J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2:1565–1572.CrossRefGoogle Scholar
  25. Zheng, L., Baumann, U., Reymond, J.L. 2004. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32:e115.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • G. Chen
    • 1
  • M. H. Zhang
    • 1
  • X. J. Liu
    • 1
  • J. Y. Fu
    • 2
  • H. Y. Li
    • 1
  • M. Hao
    • 1
  • S. Z. Ning
    • 1
  • Z. W. Yuan
    • 1
  • Z. H. Yan
    • 1
  • B. H. Wu
    • 1
  • D. C. Liu
    • 1
  • L. Q. Zhang
    • 1
    Email author
  1. 1.Triticeae Research InstituteSichuan Agricultural University at ChengduWenjiang, SichuanChina
  2. 2.Institute of Ecological AgricultureSichuan Agricultural University at ChengduWenjiang, SichuanChina

Personalised recommendations