Advertisement

Cereal Research Communications

, Volume 46, Issue 3, pp 499–509 | Cite as

Characterization of a Novel 4.0-kb Y-type HMW-GS from Eremopyrum distans

  • S. F. Dai
  • D. Y. Xu
  • Z. J. Wen
  • Z. P. Song
  • H. X. Chen
  • H. Y. Li
  • J. R. Li
  • L. Z. Kang
  • Z. H. YanEmail author
Article

Abstract

A novel 4.0-kb Fy was sequenced and bacterially expressed. This gene, the largest y-type HMW-GS currently reported, is 4,032-bp long and encodes a mature protein with 1,321 amino acid (AA) residues. The 4.0-kb Fy shows novel modifications in all domains. In the N-terminal, it contains only 67 AA residues, as three short peptides are absent. In the repetitive domain, the undecapeptide RYYPSVTSPQQ is completely lost and the dodecapeptide GSYYPGQTSPQQ is partially absent. A novel motif unit, PGQQ, is present in addition to the two standard motif units PGQGQQ and GYYPTSPQQ. Besides, an extra cysteine residue also occurs in the middle of this domain. The large molecular mass of the 4.0-kb Fy is mainly due to the presence of an extra-long repetitive domain with 1,279 AA residues. The novel 4.0-kb Fy gene is of interest in HMW-GS gene evolution as well as to wheat quality improvement with regard to its longest repetitive domain length and extra cysteines residues.

Keywords

high-molecular-weight glutenin subunits (HMW-GSs) y-type genes F genome Glu-1 gene sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4603499_MOESM1_ESM.pdf (161 kb)
Supplementary material, approximately 165 KB.

References

  1. Békés, F., Anderson, O.D., Gras, P.W., Gupta, R.B., Tam, A.S., Wrigley, C.W., Appels, R. 1994. The contribution to mixing properties of 1D HMW glutenin subunits expressed in a bacterial system. In: Henry, R.J., Ronalds, J.A. (eds) Improvement of cereal quality by genetic engineering. Plenum Press, New York. pp. 97–103.Google Scholar
  2. Dai, S.F., Pu Z.J., Liu D.C., Wei, Y.M., Zheng, Y.L., Hu, X.K. Yan, Z.H. 2013. Characterization of novel HMWGS in two diploid species of Eremopyrum. Gene 519:55–59.CrossRefGoogle Scholar
  3. D’Ovidio, R., Lafiandra, D., Porceddu, E. 1996. Identification and molecular characterization of a large insertion within the repetitive domain of a high-molecular-weight glutenin subunit gene from hexaploid wheat. Theor. Appl. Genet. 93:1048–1053.CrossRefGoogle Scholar
  4. Frederiksen, S. 1991. Taxonomic studies in Eremopyrum (Poaceae). Nord. J. Bot. 11:271–285.CrossRefGoogle Scholar
  5. Jiang Q.T., Ma J., Wei Y.M., Liu Y.X., Lan X.J., Dai, S.F., Lu, Z.X., Zhao, S., Zhao, Q.Z., Zheng, Y.L. 2012. Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding. BMC Plant Biology 12:73CrossRefGoogle Scholar
  6. Juhász, A., Larroque, O.R., Tamás, L., Hsam, S.L.K., Zeller, F.J., Békés, F., Bedő, Z. 2003. Bánkfúti 1201 – an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 107:697–704.CrossRefGoogle Scholar
  7. Lawrence, G.J., Shepherd, K.W. 1981. Chromosomal location of genes controlling seed protein in species related to wheat. Theor. Appl. Genet. 59:25–31.CrossRefGoogle Scholar
  8. Li, F., Jiang, X.L., Wei, Y.F., Xia, G.M., Liu, S.W. 2012. Characterization of a novel type of HMW subunit of glutenin from Australopyrum retrofractum. Gene 492:65–70.CrossRefGoogle Scholar
  9. Liu, S.W., Zhao, F., Gao, X., Chen, F.G., Xia, G.M. 2010. A novel high molecular weight glutenin subunit from Australopyrum retrofractum. Amino Acids. 39:385–392.CrossRefGoogle Scholar
  10. Liu, Z., Yan, Z., Wan, Y., Liu, K., Zheng, Y., Wang, D. 2003. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor. Appl. Genet. 106:1368–1378.CrossRefGoogle Scholar
  11. Payne, P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu. Rev. Plant Physiol. 38:141–153.CrossRefGoogle Scholar
  12. Pistón, F., Shewry, P.R., Barro, F. 2007. D hordeins of Hordeum chilense: a novel source of variation for improvement of wheat. Theor. Appl. Genet. 115:77–86.CrossRefGoogle Scholar
  13. Popineau, Y., Cornec, M., Lefebvre, J., Marchylo, B. 1994. Influence of high Mr glutenin subunits on glutenin polymers and rheological properties of gluten and gluten subfractions of near-isogenic lines of wheat Sicco. J. Cereal Sci. 19:231–241.CrossRefGoogle Scholar
  14. Rasheed, A., Xia, X.C., Yan, Y.M., Appels, R., Mahmood, T., He, Z.H. 2014. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J. Cereal Sci. 60:11–24.CrossRefGoogle Scholar
  15. Shewry, P.R., Halford, N.G., Tatham, A.S., Popineau, Y., Lafiandra, D., Belton, P.S. 2003. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv. Food Nutr. Res. 45:219–302.CrossRefGoogle Scholar
  16. Sun, X., Hu, S.L., Liu, X., Qian, W.Q., Hao, S.T., Zhang, A.M., Wang, D.W. 2006. Characterization of the HMW glutenin subunits from Aegilops searsii and identification of a novel variant HMW glutenin subunit. Theor. Appl. Genet. 113:631–641.CrossRefGoogle Scholar
  17. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739.CrossRefGoogle Scholar
  18. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.CrossRefGoogle Scholar
  19. Wan, Y.F., Yan, Z.H., Liu, K.F., Zheng, Y.L., D’Ovidio, R., Shewry, P.R. Halford, N.G., Wan, D.W. 2005. Comparative analysis of the D genome-encoded high-molecular weight subunits of glutenin. Theor. Appl. Genet. 111:1183–1190.CrossRefGoogle Scholar
  20. Wang, X.Q., Yan, Z.H., Dai, S.F., Liu, D.C., Wei, Y.M., Zheng, Y.L. 2012. Molecular characterization of four HMW glutenin genes from Heteranthelium piliferum C. E. Hubbard and Henrardia persica (Banks et Solander) Hochstetter. Genet Resour. Crop Evol. 59:1309–1318.CrossRefGoogle Scholar
  21. Yan, Z.H., Wei, Y.M., Wang, J.R., Liu, D.C., Dai, S. F., Zheng Y.L. 2006 Characterization of two HMW glutenin subunit genes from Taeniatherum Nevski. Genetica 127:267–276.CrossRefGoogle Scholar
  22. Zhang, Y.Z., Li, X.H., Wang, A.L., An, X.L., Zhang, Q., Pei, Y.H., Gao, L.Y., Ma, W.J., Appels, R., Yan, Y.M. 2008. Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics 178:23–33.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • S. F. Dai
    • 1
  • D. Y. Xu
    • 1
  • Z. J. Wen
    • 1
  • Z. P. Song
    • 1
  • H. X. Chen
    • 1
  • H. Y. Li
    • 1
  • J. R. Li
    • 1
  • L. Z. Kang
    • 1
  • Z. H. Yan
    • 1
    Email author
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversitySichuanChina

Personalised recommendations