Cereal Research Communications

, Volume 46, Issue 2, pp 191–200 | Cite as

Phylogenetic analyses of four Chinese endemic wheat landraces based on two single copy genes

  • Q. Chen
  • J. Song
  • W. P. Du
  • L. Y. Xu
  • Y. Jiang
  • J. Zhang
  • M. Zhang
  • G. R. YuEmail author


Chinese endemic wheat landraces possess unique morphological features and desirable traits, useful for wheat breeding. It is important to clarify the relationship among these landraces. In this study, 21 accessions of the four Chinese endemic wheat landrace species were investigated using single-copy genes encoding plastid Acetyl-CoA carboxylase (Acc-1) and 3-phosphoglycerate kinase (Pgk-1) in order to estimate their phylogenetic relationship. Phylogenetic trees were constructed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian, and TCS network and gene flow values. The A and B genome sequences from the Pgk-1 loci indicated that three accessions of Triticum petropavlovskyi were clustered into the same subclade, and the T. aestivum ssp. tibetanum and the Sichuan white wheat accessions were grouped into a separate subclade. Based on the Acc-1 gene, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense were grouped into one subclade in the A genome; the B genome from T. petropavlovskyi and T. aestivum ssp. tibetanum, and the Sichuan white wheat complex and T. aestivum ssp. tibetanum were grouped in the same clades. The D genome of T. aestivum ssp. yunnanense clustered with T. petropavlovskyi. Our findings suggested that (1) T. petropavlovskyi is distantly related to the Sichuan white wheat complex; (2) T. petropavlovskyi, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense are closely related; (3) T. aestivum ssp. tibetanum is closely related to T. aestivum ssp. yunnanense and the Sichuan white wheat complex; and (4) T. aestivum ssp. tibetanum may be an ancestor of Chinese endemic wheat landraces.


Acc-1 Pgk-1 Chinese endemic wheat landraces phylogenetic relationships 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4602191_MOESM1_ESM.pdf (543 kb)
Supplementary material, approximately 556 KB.


  1. Akond, A.S.M.G.M., Watanabe, N., Furuta, Y. 2005. Genetic variation among Portuguese landraces of ‘Arrancada’ wheat and Triticum petropavlovskyi by AFLP-based assessment. Genet. Resour. Crop Evol. 52:619–628.CrossRefGoogle Scholar
  2. Chalupska, D., Lee, H.Y., Faris, J.D., Evrard, A., Chalhoub, B., Haselkorn, R., Gornicki, P. 2008. Acc homoeoloci the evolution of wheat genomes. Proc. Natl. Acad. Sci. 105:9691–9696.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Chen, P.D., Huang, L., Liu, D. J. 1991. Analysis of the genomic constitution of Xizang wheat (Triticum aestivum ssp. tibetanum Shao) using double ditelosomics of T. aestivum cv. Chinese Spring. Acta. Genet. Sin. 18:39–43.Google Scholar
  4. Chen, P.D., Liu, D.J., Pei, G.Z., Qi, L.L., Huang, L. 1988. The chromosome constitution of three endemic hexaploid wheats in western China. In: Miller, T.E., Koebner R.M.D. (eds), Proc. 7th Int. Wheat Genet. Symp. Cambridge, U.K. pp. 75–80.Google Scholar
  5. Chen, Q., Sun, Y.Z., Dong, Y.S. 1985. Cytogenetical Studies on Interspecific Hybrids of Xinjiang wheat. Acta. Agron. Sin. 11:23–28.Google Scholar
  6. Chen, Q., Kang, H.Y., Fan, X., Wang, Y., Sha, L.N., Zhang, H.Q., Zhong, M.Y., Xu, L.L., Zeng, J., Yang, R.W., Zhang, L., Ding, C.B., Zhou, Y.H. 2013. Evolutionary history of Triticum petropavlovskyi Udacz. et Migusch. inferred from the sequences of the 3-phosphoglycerate kinase gene. PloS One 8:e71139.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Clement, M., Posada, D., Crandall, K.A. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9:1657–1659.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cronn, R., Cedroni, M., Haselkorn, T., Grover, C., Wendel, J.F. 2002. PCR-mediated recombination in amplification products derived from polyploid cotton. Theor. Appl. Genet. 104:482–489.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cui, Y.X., Ma, Y. 1991. Esterase isozyme of Chinese endemic wheat. Acta. Bot. Sin. 32:39–44.Google Scholar
  10. Dong, Y.S. 2000. Wheat genetic resources in China. In: Dong, Y.S., Zheng, D.S. (eds), Wheat Genetic Resources in China. China Agriculture Press. Beijing, China. pp. 16–30.Google Scholar
  11. Dong, Y.S., Zheng, D.S., Qiao, D.Y., Zeng, X.Q., En, Z.C., Chen, X.R. 1981. Investigation and study on Yunnan wheat (Triticum aestivum ssp. yunanense King). Acta. Agron. Sin. 7:145–151.Google Scholar
  12. Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.Google Scholar
  13. Doyle, J.J., Doyle, J.L. 1999. Nuclear Protein-coding Genes in Phylogeny Reconstruction and Homology Assessment. In: Hollingsworth, P.M., Bateman, R.M., Gornall, R.J. (eds), Molecular Systematics and Plant Evolution. Taylor & Francis Press, pp. 229–254.Google Scholar
  14. Fan, X., Sha, L.N., Yang, R.W., Zhang, H.Q., Kang, H.Y., Ding C.B., Zhang, L., Zheng, Y.L., Zhou, Y.H. 2009. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol. Biol. 9:247.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Fan, X., Sha, L.N., Zeng, J., Kang, H.Y., Zhang, H.Q., Wang, X.L., Zhang, L., Yang, R.W., Ding, C.B., Zheng, Y.L., Zhou, Y.H. 2012. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae) and its diploid relatives. PloS One 7:e31122.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fan, X., Zhang, H.Q., Sha, L.N., Zhang, L., Yang, R.W., Ding, C.B., Zhou, Y.H. 2007. Phylogenetic analysis among Hystrix, Leymus and its affinitive genera (Poaceae: Triticeae) based on the sequences of a gene encoding plastid acetyl-CoA carboxylase. Plant Sci. 172:701–707.CrossRefGoogle Scholar
  17. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Golovnina, K.A., Glushkov, S.A., Blinov, A.G., Mayorov, V.I., Adkison, L.R., Goncharov, N.P. 2007. Molecular phylogeny of the genus Triticum L.. Plant Syst. Evol. 264:195–216.CrossRefGoogle Scholar
  19. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:307–321.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Guindon, S., Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696–704.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Harlan, J.R. 1975. Our vanishing genetic resources. Science 188:617–621.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Huang, L., Chen, P.D., Liu, D.J. 1989. Analysis of the genomic constitution of Yunnan wheat (Triticum aestivum ssp. yunnanese King) using double ditelosomics of T. aestivum cv. Chinese Spring. Sci. Agri. Sin. 22:13–16.Google Scholar
  23. Huang, S., Sirikhachornkit, A., Faris, J.D., Su, X., Gill, B.S., Haselkorn, R., Gornicki, P. 2002a. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol. Biol. 48:805–820.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Huang, S., Sirikhachornkit, A., Su, X., Fairs, J., Gill, B., Haselkorn, R., Gornicki, P. 2002b. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA. 99:8133–8138.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Huelsenbeck, J.P., Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.CrossRefGoogle Scholar
  26. Huson, D.H., Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:254–267.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kang, H.Y., Fan, X., Zhang, H.Q., Sha, L.N., Sun, G., Zhou, Y.H. 2010. The origin of Triticum petropavlovskyi Udacz. et Migusch.: demonstration of the utility of the genes encoding plastid acetyl-CoA carboxylase sequence. Mol. Breeding 25:381–395.CrossRefGoogle Scholar
  28. Librado, P., Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.CrossRefGoogle Scholar
  29. Luo, X., Tinker, N.A., Fan, X., Zhang, H.Q., Sha, L.N., Kang, H.Y., Ding, C.B., Liu, J., Zhang, L., Yang, R.W., Zhou, Y.H. 2012. Phylogeny and maternal donor of Kengyilia species (Poaceae: Triticeae) based on three cpDNA (matK, rbcL and trnH-psbA) sequences. Biochem. Syst. Ecol. 44:61–69.CrossRefGoogle Scholar
  30. Posada, D., Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ronquist, F., Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.CrossRefGoogle Scholar
  32. Sang, T. 2002. Utility of low-copy nuclear gene sequences in plant phylogenetic. Crit. Rev. Biochem. Mol. Bio.l 37:121–147.CrossRefGoogle Scholar
  33. Shao, Q.Q., Li, C.S., Basang, C.R. 1980. Semi-wild wheat from Xizang (Tibet). Acta. Genet. Sin. 7:150–156.Google Scholar
  34. Smith, J., Funke, M., Woo, V. 2006. A duplication of gcyc predates divergence within tribe Coronanthereae (Gesneriaceae): phylogenetic analysis and evolution. Plant syst. Evol. 261:245–256.CrossRefGoogle Scholar
  35. Sun, G.L., Salomon B. 2009. Molecular evolution and origin of tetraploid Elymus species. Breeding Sci. 59:487–491.CrossRefGoogle Scholar
  36. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595.PubMedPubMedCentralGoogle Scholar
  37. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725–2729.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Thompson, J.D., Plewniak, F., Poch, O. 1999. A comprehensive comparison of multiple sequence alignment programs. Nucl. Acids. Res. 27:2682–2690.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Tsunewaki, K., Yamada, S., Mori, N. 1990. Genetical studies on a Tibetan semi-wild wheat, Triticum aestivum ssp. tibetanum. Jpn. J. Genet. 65:353–365.CrossRefGoogle Scholar
  41. Wang, H.Y., Wang, X.E., Chen, P.D., Liu, D.J. 2007. Assessment of Genetic Diversity of Yunnan, Tibetan, and Xinjiang Wheat Using SSR Markers. J. Genet. Genom. 34:623–633.CrossRefGoogle Scholar
  42. Ward, R.W., Yang, Z.L., Kim, H.S., Yen, C. 1998. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia. Theor. Appl. Genet. 96:312–318.CrossRefGoogle Scholar
  43. Wei, Y.M., Zheng, Y.L., Liu, D.C., Zhou, Y.H., Lan, X.J. 2002. HMW-glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat. Genet. Resour. Crop Evol. 49:327–330.CrossRefGoogle Scholar
  44. Wei, Y.M., Zheng, Y.L., Zhou, Y.H., Liu D.C., Lan, X.J., Yan, Z.H., Zhang, Z.Q. 2001. Genetic diversity of Gli-1, Gli-2 and Glu-1 alleles among Chinese endimic wheat. Acta. Bot. Sin. 43:834–839.Google Scholar
  45. Yang, W.Y., Yen, C., Yang, J.L. 1992. Cytogenetic study on the origin of some special Chinese landraces of common wheat. Wheat Inform. Serv. 75:14–20.Google Scholar
  46. Yang, X.Q., Peng, L., Han, Z.F., Ni, Z.F., Sun, Q.X. 2005. Genetic diversity revealed by genomic-SSR and EST-SSR markers among common wheat, spelt and compactum. Prog. Nat. Sci. 15:24–33.CrossRefGoogle Scholar
  47. Yan, C., Sun, G.L. (2011) Nucleotide divergence and genetic relationships of Pseudoroegneria species. Biochem. Syst. Ecol. 39:309–319.CrossRefGoogle Scholar
  48. Yao, J.X., Yang, F.B., Shi, S.Y., Zhao, Y.M. 1983. Research on a new species in Triticum-Xinjiang wheat with rice-like spike. Hereditas 5:17–20.Google Scholar
  49. Yen, C., Yang, J.L., Luo, M.C. 1988. The origin of the Tibetan weedrace of hexaploid wheat, Chinese Spring, Chengdu guangtou and other landraces of white wheat complex from china. In: Miller, T.E., Koebner R.M.D. (eds), Proc. 7th Int. Wheat Genet. Symp. Cambridge, U.K. pp. 175–179.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • Q. Chen
    • 1
    • 2
    • 3
  • J. Song
    • 1
  • W. P. Du
    • 1
  • L. Y. Xu
    • 1
  • Y. Jiang
    • 1
  • J. Zhang
    • 1
  • M. Zhang
    • 1
  • G. R. Yu
    • 1
    Email author
  1. 1.Institute of Biotechnology and Nuclear TechnologySichuan Academy of Agricultural SciencesChengdu, SichuanChina
  2. 2.Triticeae Research InstituteSichuan Agricultural UniversityWenjiang, Chengdu, SichuanChina
  3. 3.Key Laboratory of Crop Genetic Resources and Improvement, Ministry of EducationSichuan Agricultural UniversityWenjiang, Chengdu, SichuanChina

Personalised recommendations