Phylogenetic analyses of four Chinese endemic wheat landraces based on two single copy genes

Abstract

Chinese endemic wheat landraces possess unique morphological features and desirable traits, useful for wheat breeding. It is important to clarify the relationship among these landraces. In this study, 21 accessions of the four Chinese endemic wheat landrace species were investigated using single-copy genes encoding plastid Acetyl-CoA carboxylase (Acc-1) and 3-phosphoglycerate kinase (Pgk-1) in order to estimate their phylogenetic relationship. Phylogenetic trees were constructed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian, and TCS network and gene flow values. The A and B genome sequences from the Pgk-1 loci indicated that three accessions of Triticum petropavlovskyi were clustered into the same subclade, and the T. aestivum ssp. tibetanum and the Sichuan white wheat accessions were grouped into a separate subclade. Based on the Acc-1 gene, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense were grouped into one subclade in the A genome; the B genome from T. petropavlovskyi and T. aestivum ssp. tibetanum, and the Sichuan white wheat complex and T. aestivum ssp. tibetanum were grouped in the same clades. The D genome of T. aestivum ssp. yunnanense clustered with T. petropavlovskyi. Our findings suggested that (1) T. petropavlovskyi is distantly related to the Sichuan white wheat complex; (2) T. petropavlovskyi, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense are closely related; (3) T. aestivum ssp. tibetanum is closely related to T. aestivum ssp. yunnanense and the Sichuan white wheat complex; and (4) T. aestivum ssp. tibetanum may be an ancestor of Chinese endemic wheat landraces.

References

  1. Akond, A.S.M.G.M., Watanabe, N., Furuta, Y. 2005. Genetic variation among Portuguese landraces of ‘Arrancada’ wheat and Triticum petropavlovskyi by AFLP-based assessment. Genet. Resour. Crop Evol. 52:619–628.

    Article  Google Scholar 

  2. Chalupska, D., Lee, H.Y., Faris, J.D., Evrard, A., Chalhoub, B., Haselkorn, R., Gornicki, P. 2008. Acc homoeoloci the evolution of wheat genomes. Proc. Natl. Acad. Sci. 105:9691–9696.

    Article  Google Scholar 

  3. Chen, P.D., Huang, L., Liu, D. J. 1991. Analysis of the genomic constitution of Xizang wheat (Triticum aestivum ssp. tibetanum Shao) using double ditelosomics of T. aestivum cv. Chinese Spring. Acta. Genet. Sin. 18:39–43.

    Google Scholar 

  4. Chen, P.D., Liu, D.J., Pei, G.Z., Qi, L.L., Huang, L. 1988. The chromosome constitution of three endemic hexaploid wheats in western China. In: Miller, T.E., Koebner R.M.D. (eds), Proc. 7th Int. Wheat Genet. Symp. Cambridge, U.K. pp. 75–80.

  5. Chen, Q., Sun, Y.Z., Dong, Y.S. 1985. Cytogenetical Studies on Interspecific Hybrids of Xinjiang wheat. Acta. Agron. Sin. 11:23–28.

    Google Scholar 

  6. Chen, Q., Kang, H.Y., Fan, X., Wang, Y., Sha, L.N., Zhang, H.Q., Zhong, M.Y., Xu, L.L., Zeng, J., Yang, R.W., Zhang, L., Ding, C.B., Zhou, Y.H. 2013. Evolutionary history of Triticum petropavlovskyi Udacz. et Migusch. inferred from the sequences of the 3-phosphoglycerate kinase gene. PloS One 8:e71139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clement, M., Posada, D., Crandall, K.A. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9:1657–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cronn, R., Cedroni, M., Haselkorn, T., Grover, C., Wendel, J.F. 2002. PCR-mediated recombination in amplification products derived from polyploid cotton. Theor. Appl. Genet. 104:482–489.

    Article  CAS  Google Scholar 

  9. Cui, Y.X., Ma, Y. 1991. Esterase isozyme of Chinese endemic wheat. Acta. Bot. Sin. 32:39–44.

    Google Scholar 

  10. Dong, Y.S. 2000. Wheat genetic resources in China. In: Dong, Y.S., Zheng, D.S. (eds), Wheat Genetic Resources in China. China Agriculture Press. Beijing, China. pp. 16–30.

    Google Scholar 

  11. Dong, Y.S., Zheng, D.S., Qiao, D.Y., Zeng, X.Q., En, Z.C., Chen, X.R. 1981. Investigation and study on Yunnan wheat (Triticum aestivum ssp. yunanense King). Acta. Agron. Sin. 7:145–151.

    Google Scholar 

  12. Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.

    Google Scholar 

  13. Doyle, J.J., Doyle, J.L. 1999. Nuclear Protein-coding Genes in Phylogeny Reconstruction and Homology Assessment. In: Hollingsworth, P.M., Bateman, R.M., Gornall, R.J. (eds), Molecular Systematics and Plant Evolution. Taylor & Francis Press, pp. 229–254.

  14. Fan, X., Sha, L.N., Yang, R.W., Zhang, H.Q., Kang, H.Y., Ding C.B., Zhang, L., Zheng, Y.L., Zhou, Y.H. 2009. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol. Biol. 9:247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan, X., Sha, L.N., Zeng, J., Kang, H.Y., Zhang, H.Q., Wang, X.L., Zhang, L., Yang, R.W., Ding, C.B., Zheng, Y.L., Zhou, Y.H. 2012. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae) and its diploid relatives. PloS One 7:e31122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan, X., Zhang, H.Q., Sha, L.N., Zhang, L., Yang, R.W., Ding, C.B., Zhou, Y.H. 2007. Phylogenetic analysis among Hystrix, Leymus and its affinitive genera (Poaceae: Triticeae) based on the sequences of a gene encoding plastid acetyl-CoA carboxylase. Plant Sci. 172:701–707.

    Article  CAS  Google Scholar 

  17. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.

    Google Scholar 

  18. Golovnina, K.A., Glushkov, S.A., Blinov, A.G., Mayorov, V.I., Adkison, L.R., Goncharov, N.P. 2007. Molecular phylogeny of the genus Triticum L.. Plant Syst. Evol. 264:195–216.

    Article  CAS  Google Scholar 

  19. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:307–321.

    Article  CAS  Google Scholar 

  20. Guindon, S., Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696–704.

    PubMed  PubMed Central  Google Scholar 

  21. Harlan, J.R. 1975. Our vanishing genetic resources. Science 188:617–621.

    Article  CAS  Google Scholar 

  22. Huang, L., Chen, P.D., Liu, D.J. 1989. Analysis of the genomic constitution of Yunnan wheat (Triticum aestivum ssp. yunnanese King) using double ditelosomics of T. aestivum cv. Chinese Spring. Sci. Agri. Sin. 22:13–16.

    Google Scholar 

  23. Huang, S., Sirikhachornkit, A., Faris, J.D., Su, X., Gill, B.S., Haselkorn, R., Gornicki, P. 2002a. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol. Biol. 48:805–820.

    Article  CAS  Google Scholar 

  24. Huang, S., Sirikhachornkit, A., Su, X., Fairs, J., Gill, B., Haselkorn, R., Gornicki, P. 2002b. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA. 99:8133–8138.

    Article  CAS  Google Scholar 

  25. Huelsenbeck, J.P., Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huson, D.H., Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:254–267.

    Article  CAS  Google Scholar 

  27. Kang, H.Y., Fan, X., Zhang, H.Q., Sha, L.N., Sun, G., Zhou, Y.H. 2010. The origin of Triticum petropavlovskyi Udacz. et Migusch.: demonstration of the utility of the genes encoding plastid acetyl-CoA carboxylase sequence. Mol. Breeding 25:381–395.

    Article  CAS  Google Scholar 

  28. Librado, P., Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo, X., Tinker, N.A., Fan, X., Zhang, H.Q., Sha, L.N., Kang, H.Y., Ding, C.B., Liu, J., Zhang, L., Yang, R.W., Zhou, Y.H. 2012. Phylogeny and maternal donor of Kengyilia species (Poaceae: Triticeae) based on three cpDNA (matK, rbcL and trnH-psbA) sequences. Biochem. Syst. Ecol. 44:61–69.

    Article  CAS  Google Scholar 

  30. Posada, D., Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818.

    Article  CAS  Google Scholar 

  31. Ronquist, F., Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sang, T. 2002. Utility of low-copy nuclear gene sequences in plant phylogenetic. Crit. Rev. Biochem. Mol. Bio.l 37:121–147.

    Article  CAS  Google Scholar 

  33. Shao, Q.Q., Li, C.S., Basang, C.R. 1980. Semi-wild wheat from Xizang (Tibet). Acta. Genet. Sin. 7:150–156.

    Google Scholar 

  34. Smith, J., Funke, M., Woo, V. 2006. A duplication of gcyc predates divergence within tribe Coronanthereae (Gesneriaceae): phylogenetic analysis and evolution. Plant syst. Evol. 261:245–256.

    Article  Google Scholar 

  35. Sun, G.L., Salomon B. 2009. Molecular evolution and origin of tetraploid Elymus species. Breeding Sci. 59:487–491.

    Article  CAS  Google Scholar 

  36. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thompson, J.D., Plewniak, F., Poch, O. 1999. A comprehensive comparison of multiple sequence alignment programs. Nucl. Acids. Res. 27:2682–2690.

    Article  CAS  Google Scholar 

  40. Tsunewaki, K., Yamada, S., Mori, N. 1990. Genetical studies on a Tibetan semi-wild wheat, Triticum aestivum ssp. tibetanum. Jpn. J. Genet. 65:353–365.

    Article  Google Scholar 

  41. Wang, H.Y., Wang, X.E., Chen, P.D., Liu, D.J. 2007. Assessment of Genetic Diversity of Yunnan, Tibetan, and Xinjiang Wheat Using SSR Markers. J. Genet. Genom. 34:623–633.

    Article  CAS  Google Scholar 

  42. Ward, R.W., Yang, Z.L., Kim, H.S., Yen, C. 1998. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia. Theor. Appl. Genet. 96:312–318.

    Article  CAS  Google Scholar 

  43. Wei, Y.M., Zheng, Y.L., Liu, D.C., Zhou, Y.H., Lan, X.J. 2002. HMW-glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat. Genet. Resour. Crop Evol. 49:327–330.

    Article  Google Scholar 

  44. Wei, Y.M., Zheng, Y.L., Zhou, Y.H., Liu D.C., Lan, X.J., Yan, Z.H., Zhang, Z.Q. 2001. Genetic diversity of Gli-1, Gli-2 and Glu-1 alleles among Chinese endimic wheat. Acta. Bot. Sin. 43:834–839.

    CAS  Google Scholar 

  45. Yang, W.Y., Yen, C., Yang, J.L. 1992. Cytogenetic study on the origin of some special Chinese landraces of common wheat. Wheat Inform. Serv. 75:14–20.

    Google Scholar 

  46. Yang, X.Q., Peng, L., Han, Z.F., Ni, Z.F., Sun, Q.X. 2005. Genetic diversity revealed by genomic-SSR and EST-SSR markers among common wheat, spelt and compactum. Prog. Nat. Sci. 15:24–33.

    Article  Google Scholar 

  47. Yan, C., Sun, G.L. (2011) Nucleotide divergence and genetic relationships of Pseudoroegneria species. Biochem. Syst. Ecol. 39:309–319.

    Article  CAS  Google Scholar 

  48. Yao, J.X., Yang, F.B., Shi, S.Y., Zhao, Y.M. 1983. Research on a new species in Triticum-Xinjiang wheat with rice-like spike. Hereditas 5:17–20.

    Google Scholar 

  49. Yen, C., Yang, J.L., Luo, M.C. 1988. The origin of the Tibetan weedrace of hexaploid wheat, Chinese Spring, Chengdu guangtou and other landraces of white wheat complex from china. In: Miller, T.E., Koebner R.M.D. (eds), Proc. 7th Int. Wheat Genet. Symp. Cambridge, U.K. pp. 175–179.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. R. Yu.

Additional information

Communicated by T. Harangozó and R.A. McIntosh

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Song, J., Du, W.P. et al. Phylogenetic analyses of four Chinese endemic wheat landraces based on two single copy genes. CEREAL RESEARCH COMMUNICATIONS 46, 191–200 (2018). https://doi.org/10.1556/0806.46.2018.01

Download citation

Keywords

  • Acc-1
  • Pgk-1
  • Chinese endemic wheat landraces
  • phylogenetic relationships