Advertisement

Cereal Research Communications

, Volume 46, Issue 1, pp 104–113 | Cite as

Identification of Sitobion avenae F. Resistance and Genetic Diversity of Wheat Landraces from Qinling Mountains, China

  • X. L. Liu
  • B. Y. Lu
  • C. Y. Wang
  • Y. J. Wang
  • H. Zhang
  • Z. R. Tian
  • W. Q. JiEmail author
Pathology

Abstract

The aphid Sitobion avenae F. is one of the most harmful pests of wheat growth in the world. A primary field screening test was carried out to evaluate the S. avenae resistance of 527 wheat landraces from Shaanxi. The results indicated that 25 accessions (4.74%) were resistant to S. avenae in the three consecutive seasons, of which accession S849 was highly resistant, and seven accessions were moderately resistant. The majority of S. avenae resistant accessions come from Qinling Mountains. Then, the genetic variability of a set of 33 accessions (25 S. avenae resistant and 8 S. avenae susceptible) originating from Qinling Mountains have been assessed by 20 morphological traits and 99 simple sequence repeat markers (SSRs). Morphological traits and SSRs displayed a high level of genetic diversity within 33 accessions. The clustering of the accessions based on morphological traits and SSR markers showed significant discrepancy according to the geographical distribution, resistance to S. avenae and species of accessions. The highly and moderately resistant landrace accessions were collected from the middle and the east part of Qinling Mountains with similar morphology characters, for example slender leaves with wax, lower leaf area, and high ear density. These S. avenae resistant landraces can be used in wheat aphid resistance breeding as valuable resources.

Keywords

wheat landraces Sitobion avenae F. genetic diversity analysis morphological traits SSR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is supported by the Key Technologies R&D Program of China (Grant Number 2013BAD01B02-6), the innovation project of science and technology of Shaanxi province of China (Grant Number 2015KTZDNY01-01-02) and Zhongying Tang Breeding Foundation of Northwest A&F University.

Supplementary material

42976_2018_4601104_MOESM1_ESM.pdf (504 kb)
Identification of Sitobion avenae F. Resistance and Genetic Diversity of Wheat Landraces from Qinling Mountains, China

References

  1. Alamerew, S., Chebotar, S., Huang, X., Röder, M., Börner, A. 2004. Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genet. Resour. Crop Ev. 51:559–567.CrossRefGoogle Scholar
  2. Ayala, M., Guzmán, C., Peña, R.J., Alvarez, J.B. 2016. Diversity of phenotypic (plant and grain morphological) and genotypic (glutenin alleles in Glu-1 and Glu-3 loci) traits of wheat landraces (Triticum aestivum) from Andalusia (Southern Spain). Genet. Resour. Crop Ev. 63:465–475.CrossRefGoogle Scholar
  3. Dreisigacker, S., Zhang, P., Warburton, M.L., Skovmand, B., Hoisington, D., Melchinger, A.E. 2004. Genetic diversity in elite lines and landraces of CIMMYT spring bread wheat and hybrid performance of crosses among elite germplasm. Crop Sci. http://www.researchgate.netpublication/29685715
  4. Dong, Y.S., Cao, Y.S., Zhang, X.Y., Liu, S.C., Wang, L.F., You, G.X., Pang, B.S., Li, L.H., Jia, J.Z. 2003. Establishment of candidate core collections in Chinese common wheat germplasm. J. Plant Genet. Resour. 4:1–8. (in Chinese with English abstract)Google Scholar
  5. Hu, X.S., Liu, Y.J., Wang, Y.H., Wang, Z., Yu, X.L., Wang, B., Zhang, G.S., Liu, X.Q., Zhao, H.Y., Liu, T.X. 2016. Resistance of wheat accessions to the English grain aphid Sitobion avenae. PLOS ONE. 11:e0156158.CrossRefGoogle Scholar
  6. Iqbal, N., Tabasum, A., Sayed, H., Hameed, A. 2009. Evaluation of genetic diversity among bread wheat varieties and landraces of Pakistan by SSR markers. Cereal Res. Commun. 37:489–498.CrossRefGoogle Scholar
  7. Inspection and Quarantine Bureau of People’s Republic of China 2007. Agricultural industry standard of the People’s Republic of China (NY/T 1443.7–2007). Rules for resistance evaluation of wheat to diseases and insect pests. Part 7: Rule for resistance evaluation of wheat to aphids. http://www.ent-bull.com.cnadmin/down-file.aspx?id=34322
  8. Khan, M., Port, G. 2008. Performance of clones and morphs of two cereal aphids on wheat plants with high and low nitrogen content. Entomol. Sci. 11:159–165.CrossRefGoogle Scholar
  9. Larsson, H. 2005. A crop loss model and economic thresholds for the grain aphid, Sitobion avenae (F.), in winter wheat in southern Sweden. Crop Protection 24:397–405.CrossRefGoogle Scholar
  10. Li, C.S., Shang, X.W., Shi, G.Y., Sun, D.X., Yuan, J.X. 2007. Effect of northern spring wheat some morphological characters on the resistance level to wheat aphid. J. Gansu Agr. U. 6:80–83 (in Chinese with English abstract).Google Scholar
  11. Li, F.Q., Peng, J.H. 2014. Genetic and association mapping study of English grain aphid resistance and tolerance in bread wheat germplasm. J. Integr. Agr. 13:40–53.CrossRefGoogle Scholar
  12. Liu, X.L., Wang, C.Y., Wang, Y.J., Zhang, H., Ji, W.Q. 2014. Screening and evaluation of different wheat varieties for resistance to English grain aphid Sitobion avenae at seedling and adult-plant stages. Acta Phytophyl. Sin. 41:216–224.Google Scholar
  13. Liu, X.L., Wang, Y.J., Sang, L.Q., Xiang, J.Y., Ji, W.Q. 2006. Relationship between morphological characters of wheat germplasm and their resistance to Sitobion avenae (F.). J. Triticeae Crops 26:24–28. (in Chinese with English abstract)Google Scholar
  14. Liu, W., Yin, D.X., Liu, J.J., Li, N. 2014. Genetic diversity and structure of Sinopodophyllum hexandrum (Royle) ying in the Qinling Mountains, China. PLOS ONE. 9:e110500.CrossRefGoogle Scholar
  15. Ma, X.M., Liu, X.X., Zhang, Q.W., Zhao, J.Z., Cai, Q.N., Ma, Y.A. Chen, D.M. 2006. Assessment of cotton aphids, Aphis gossypii, and their natural enemies on aphid-resistant and aphid-susceptible wheat varieties in a wheat-cotton relay intercropping system. Entomol. Exp. Appl. 121:235–241.CrossRefGoogle Scholar
  16. Shi, G.Y., Shang, X.W., Wang, H.J., Ma, X.L. 2008. Screening the resistance to aphid of spring wheat germplasm. J. Lanzhou U. (Nat. Sci.) 44:40–43. (in Chinese with English abstract)Google Scholar
  17. Sönmeoğlu, Ö.A., Bozmaz, B., Yildirim, A., Kandemïr, N., Aydin, N. 2012. Genetic characterization of Turkish bread wheat landraces based on microsatellite markers and morphological characters. Turk. J. Biol. 36:589–597.Google Scholar
  18. Teklu, Y., Hammer, K., Huang, X.Q., Röder, M.S. 2006. Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces. Genet. Resour. Crop Evol. 53:1115–1126.CrossRefGoogle Scholar
  19. Tang, Z.Y., Fang, J.Y., Zhang, L. 2004. Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodivers. Sci. 12:115–122. (in Chinese with English abstract)Google Scholar
  20. Wang, C.P., Luo, K., Zhao, H.Y., Zhang, G.S., Li, D., Gao, H.H., Deng, M., Liu, L. 2011. Genetic diversity of wheat germplasm resistance to the aphid (Sitobion avenae F.) by SSR markers. J. Nucl. Agri. Sci. 25:639–644. (in Chinese with English abstract)Google Scholar
  21. Wang, C.P., Wang, Z.H., Zhao, H.Y., Zhu, Q.D., Luo, K., Wang, L.M., Dong, P.H. 2013. Expression of potential resistance genes to the English grain aphid, Sitobion avenae, in wheat, Triticum aestivum. J. Insect Sci. 13:90.PubMedPubMedCentralGoogle Scholar
  22. Wang, M.F., Yang, H.M., Liu, J.Q., Lei, Z.S., Wu, Z.Q., Yuan, G.H., Chen, J.L. 2010. Effect of aphid damage on wheat yield and quality in Yellow and Huai Valleys winter wheat region. J. Henan Agri. Sci. 4:16–20. (in Chinese with English abstract)Google Scholar
  23. Yildirim, A., Sönmezoğlu, Ö.A., Gökmen, S., Kandemir, N., Aydin, N. 2011. Determination of genetic diversity among Turkish durum wheat landraces by microsatellites. Afr. J. Biotechnol. 10:3915–3920.Google Scholar
  24. Yu, X.D., Pickett, J., Ma, Y.Z., Bruce, T., Napier, J., Jones, H.D., Xia, L.Q. 2012. Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants. J. Integr. Plant Biol. 54:282–299.CrossRefGoogle Scholar
  25. Zhang, P., Dreisigacker, S., Buerkert, A., Alkhanjari, S., Melchinger, A.E., Warburton, M.L. 2006. Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genet. Resour. Crop Ev. 53:1351–1360.CrossRefGoogle Scholar
  26. Zhou, H.B., Chen, J.L., Cheng, D.F., Francis, F., Liu, Y., Sun, J.R., Huang, Y., Wang, X.S., Liu, X.W., Liu, X.M., Zeng, J.D. 2011. Evaluation on the resistance to aphids of wheat germplasm resources in China. Afr. J. Biotechnol. 10:13930–13935.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • X. L. Liu
    • 1
  • B. Y. Lu
    • 1
  • C. Y. Wang
    • 1
  • Y. J. Wang
    • 1
  • H. Zhang
    • 1
  • Z. R. Tian
    • 1
  • W. Q. Ji
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Agronomy, Northwest A&F UniversityYangling, ShaanxiChina

Personalised recommendations