Advertisement

Cereal Research Communications

, Volume 46, Issue 1, pp 89–103 | Cite as

Response of Putative Pathogenicity-related Genes in Tilletia indica Inciting Karnal Bunt of Wheat

  • M. S. GurjarEmail author
  • A. Jogawat
  • M. S. Saharan
  • R. Aggarwal
Pathology

Abstract

Karnal bunt of wheat (Tilletia indica) is an important internationally quarantined disease from food security point of view. For understanding host specificity and host-pathogen interaction, putative pathogenicity-related genes were analysed in Tilletia indica in response to host factor at different time points. Highest radial mycelia growth (3.4 cm) was recorded in media amended with susceptible host factor followed by resistant host (2.6 cm) and control (2.0 cm) at 30 days after incubation significantly. Fourteen homologous sequences of putative pathogenicity-related genes, viz. TiPmk1, TiKss1, TiHog1, TiHsp70, TiKpp2, TiCts1, TiHos2, TiChs1, TiPrf1, TiSid1, TiSsp1, TiSte20, TiUbc4 and TiUkc1, were identified in T. indica by in silico analysis. Some of the pathogenicity-related genes were highly expressed significantly in T. indica in response to susceptible host factor as compared to resistant host factor. TiPmk1, TiHog1, TiKss1 were found highly upregulated up to 26-fold (3 days), 20-fold (3 days) and 18-fold (4 days), respectively, significantly in presence of susceptible host factor. The TiCts1 and TiChs1 showed transcripts up to 26-fold (4 days) and 20-fold (3 days) in the presence of susceptible host factor. Further, the TiUbc4 and TiUkc1 were found upregulated up to 20-fold and 7-fold at 8 days and 3 days post incubation. This study provided the insight on expression of putative pathogenicity-related genes in T. indica which will help in understanding the infection mechanism and basis for further functional genomics approach.

Keywords

Tilletia indica Triticum aestivum host factor pathogenicity-related genes qRT-PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge research grant from ICAR-Consortium Research Platform on Genomics (12:151/2015) for funding of this research work. We are also thankful to Director and Joint Director (Research), ICAR-IARI, New Delhi for providing guidance and facilities.

Supplementary material

42976_2018_4601089_MOESM1_ESM.pdf (156 kb)
Response of Putative Pathogenicity-related Genes in Tilletia indica Inciting Karnal Bunt of Wheat

References

  1. Aggarwal, R., Tripathi, A., Yadav, A. 2010. Pathogenic and genetic variability in Tilletia indica monosporidial culture lines using universal rice primer-PCR. Euro. J. Plant Pathol. 128:333–342.CrossRefGoogle Scholar
  2. Andrews, D.L., Egan, J.D., Mayorga, M.E., Gold, S.E. 2000. The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mole. Plant Microbe. Inter. 13:781–786.CrossRefGoogle Scholar
  3. Bansal, R., Singh, D.V., Joshi, L.M. 1983. Germination of teliospores of Karnal bunt of wheat. Seed Res. 11:258–261.Google Scholar
  4. Bonde, M.R., Berner, D.K., Nester, S.E., Peterson, G.L., Olsen, M.W., Cunfer, B.M., Sim, T. 2004. Survival of Tilletia indica teliospores in different soils. Plant Dis. 88:316–324.CrossRefGoogle Scholar
  5. Carris, L.M., Castlebury, L.A., Goates, B.J. 2006. Nonsystemic bunt fungi-Tilletia indica and T. horrida: a review of history, systematics, and biology. Annu. Rev. Phytopathol. 44:113–133.CrossRefGoogle Scholar
  6. Dhaliwal, H.S., Singh, D.V. 1989. Production and interrelationship of two types of secondary sporidia of Neovossia indica. Curr. Sci. 58:614–618.Google Scholar
  7. Di Pietro, A., Garcia-Maceira, F.I., Meglecz, E., Roncero, M.I.G. 2001. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mole. Microbiol. 39:1140–1152.CrossRefGoogle Scholar
  8. Dixon, K.P., Xu, J.R., Smirnoff, N., Talbot, N.J. 1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058.CrossRefGoogle Scholar
  9. Durrenberger. F., Kronstad, J. 1999. The ukc1 gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis. Mole. Gen. Genet. 261:281–289.CrossRefGoogle Scholar
  10. Elias-Villalobos, A., Fernandez-Alvarez, A., Moreno-Sanchez, I., Helmlinger, D., Ibeas, J.I. 2015. The Hos2 Histone deacetylase controls Ustilago maydis virulence through direct regulation of mating-type genes. PLoS Pathol. 11:e1005134.CrossRefGoogle Scholar
  11. Gupta, A.K., Seneviratne, J.M., Joshi, G.K., Kumar, A. 2012. Induction of MAP kinase homologues during growth and morphogenetic development of Karnal bunt (Tilletia indica) under the influence of host factor (s) from wheat spikes. The Scientific World J. 12:1–12.Google Scholar
  12. Gurjar, M.S., Jogawat, A., Kulshresta, D., Sharma, S., Gogoi, R., Aggarwal, R. 2016. Intraspecific variation of Tilletia indica isolates causing Karnal bunt of wheat in India. Indian Phytopathol. 69:352–356.Google Scholar
  13. Hartmann, H.A., Kruger, J., Lottspeich, F., Kahmann, R. 1999. Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. The Plant Cell 11:1293–1305.CrossRefGoogle Scholar
  14. Holden, D.W., Kronstad, J.W., Leong, S.A. 1989. Mutation in a heat-regulated hsp70 gene of Ustilago maydis. The EMBO J. 8:1927.CrossRefGoogle Scholar
  15. Huber, S.M.F.E., Lottspeich, F., Kamper, J. 2002. A gene that encodes a product with similarity to dioxygenases is highly expressed in teliospores of Ustilago maydis. Mole. Genet. Genom. 267:757–771.CrossRefGoogle Scholar
  16. Langner, T., Ozturk, M., Hartmann, S., Cord-Landwehr, S., Moerschbacher, B., Walton, J.D., Gohre, V. 2015. Chitinases are essential for cell separation in Ustilago maydis. Eukar. Cell 14:846–857.CrossRefGoogle Scholar
  17. Mayorga, M.E., Gold, S.E. 1999. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mole. Microbiol. 34:485–497.CrossRefGoogle Scholar
  18. Mei, B., Budde, A.D., Leong, S.A. 1993. Sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc. Natl Acad. Sci. 90:903–907.CrossRefGoogle Scholar
  19. Mey, G., Oeser, B., Lebrun, M.H., Tudzynski, P. 2002. The biotrophic, non-appressoria forming grass pathogen Claviceps purpurea needs a Fus3/Pmk1 homologous MAP kinase for colonization of rye ovarian tissue. Mole. Plant-Microbe Inter. 15:303–312.CrossRefGoogle Scholar
  20. Mitra, M. 1931. A new bunt on wheat in India. Annals App. Biol. 18:178.CrossRefGoogle Scholar
  21. Muller, P., Aichinger, C., Feldbrugge, M., Kahmann, R. 1999. The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis. Mole. Microbiol. 34:1007–1017.CrossRefGoogle Scholar
  22. Muller, P., Weinzierl, G., Brachmann, A., Feldbrugge, M., Kahmann, R. 2003. Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukar. Cell 2:1187–1199.CrossRefGoogle Scholar
  23. Nagarajan, S., Aujla, S.S., Nanda, G.S., Sharma, I., Goel, L.B., Kumar, J., Singh, D.V. 1997. Karnal bunt (Tilletia indica) of wheat-a review. Rev. Plant Pathol. 76:1208–1214.Google Scholar
  24. Rana, M., Arora, C., Ram, B., Kumar, A. 2001. Floret specificity of Karnal bunt infection due to presence of fungal growth-promotory activity in wheat spikes. J. Plant Biol. 28:283–290.Google Scholar
  25. Schmittgen, T.D., Livak, K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocol 3:1101–1108.CrossRefGoogle Scholar
  26. Singh, D.V., Gogoi, R. 2011. Karnal bunt of wheat (Triticum sp.): A global scenario. Indian J. Agr. Sci. 81:3–14.Google Scholar
  27. Smith, D.G., Garcia-Pedrajas, M.D., Hong, W., Yu, Z., Gold, S.E., Perlin, M.H. 2004. A ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity. Eukary. Cell 3:180–189.CrossRefGoogle Scholar
  28. Thirumalaisamy, P.P., Singh, D.V. 2012. Variability of Indian isolates of Tilletia indica assessed by pathogenicity and molecular markers. J. Phytopathol. 160:525–531.CrossRefGoogle Scholar
  29. Tripathi A., Aggarwal, R., Yadav, A. 2013. Differential expression analysis of defense related genes responsive to Tilletia indica infection in wheat. Turk. J. Biol. 37:606–613.CrossRefGoogle Scholar
  30. Turra, D., Segorbe, D., Di Pietro, A. 2014. Protein kinases in plant-pathogenic fungi: conserved regulators of infection. Annu. Rev. Phytopathol. 52:267–288.CrossRefGoogle Scholar
  31. Wang, N., Ai, P., Tang, Y., Zhang, J., Dai, X., Li, P., Zheng, A. 2015. Draft genome sequence of the rice kernel smut Tilletia horrida strain QB-1.Genome Announc. 3:e00621–15.PubMedPubMedCentralGoogle Scholar
  32. Warham, E.J. 1987. Studies on Karnal Bunt of Wheat. PhD, University of Wales. Aberystwyth, UK.Google Scholar
  33. Xoconostle-Cazares, B., Leon-Ramirez, C., Ruiz-Herrera, J. 1996. Two chitin synthase genes from Ustilago maydis. Microbiol. 142:377–387.CrossRefGoogle Scholar
  34. Yu, D., Li, R., Yu, Z., Cao, Z. 2016. Molecular characterization of a Hog1-type MAPK, MlpHog1, from Melampsora larici-populina. Phytoparasit. 44:251–259.CrossRefGoogle Scholar
  35. Zheng, D., Wang, Y., Han, Y., Xu, J.R., Wang, C. 2016. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci. Rep. doi:10.1038/ srep24824.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • M. S. Gurjar
    • 1
    Email author
  • A. Jogawat
    • 1
  • M. S. Saharan
    • 1
  • R. Aggarwal
    • 1
  1. 1.Fungal and Molecular Biology Laboratory, Division of Plant PathologyICAR-Indian Agricultural Research Institute, New DelhiDelhiIndia

Personalised recommendations