Cereal Research Communications

, Volume 46, Issue 1, pp 124–134 | Cite as

Potential Use of Sicilian Landraces in Biofortification of Modern Durum Wheat Varieties: Evaluation of Caryopsis Micronutrient Concentrations

  • F. Sciacca
  • M. Allegra
  • S. Licciardello
  • G. Roccuzzo
  • B. Torrisi
  • N. Virzì
  • M. BrambillaEmail author
  • E. Romano
  • M. Palumbo
Open Access
Quality and Utilization


The selection process has caused modern durum wheat cultivars to achieve higher yields with different protein quality but also to have low micronutrient amounts. In order to evaluate the suitability of germplasm for the recovery of such nutrient content, macro- and microelements concentrations in twelve ancient Sicilian durum wheat landraces and in three modern cultivars were compared. According to the results, the substantial differences in macro- and micro-element concentrations between the two groups of wheat genotypes suggest ancient Sicilian landraces can effectively represent a suitable genetic material for biofortification plans of micronutrients in modern varieties.


Triticum turgidum biodiversity bioactive compounds mineral concentration 



The authors are grateful to the PON01_01145 “ISCOCEM” Project for the financial support. The authors also aknowledge Mr. Elia Premoli, for the valuable help provided in organizing the data set.


  1. Altieri, M.A. 2004. Linking ecologists and traditional farmers in the search for sustainable agriculture. Front. Ecol. Environ. 2:35–42.CrossRefGoogle Scholar
  2. AOAC 2010. Official Method 960.52–1961: Microchemical Determination of Nitrogen. Association of Official Analytical Chemists Washington D.C., USA.Google Scholar
  3. Badakhshan, H., Moradi, N., Mohammadzadeh, H., Zakeri, M.R. 2013. Genetic variability analysis of grains Fe, Zn and beta-carotene concentration of prevalent wheat varieties in Iran. Int. J. Agr. Crop. Sci. 6:57–62.Google Scholar
  4. Boggini, G., Palumbo, M., Calcagno, F. 1990. Characterization and utilization of Sicilian landraces of durum wheat in breeding programmes. In: Srivastava, J.P., Damania, A.B. (eds), Wheat Genetic Resources: Meeting Diverse Needs. J. Wiley and Sons. Chichester, UK. pp. 223–234.Google Scholar
  5. Cakmak, I., Ozkan, H., Braun, H.J., Welch, R.M., Romheld, V. 2000. Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr. Bull. 21:401–403.CrossRefGoogle Scholar
  6. Cakmak, I., Pfeiffer, W.H., McClafferty, B. 2010. Biofortification of durum wheat with zinc and iron. Cereal Chem. 87:10–20.CrossRefGoogle Scholar
  7. Dallman, P.R. 1987. Iron deficiency and the immune response. Am. J. Clin. Nutr. 46:329–334.PubMedCrossRefPubMedCentralGoogle Scholar
  8. De Vita, P., Mastrangelo, A.M., Matteu, L., Mazzucotelli, E., Virzì, N., Palumbo, M., Lo Storto, M., Rizza, F., Cattivelli, L. 2010. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Res. 119:68–77.CrossRefGoogle Scholar
  9. Distelfeld, A., Cacmak, I., Peleg, Z., Ozturk, L., Yazici, A.M., Budak, H., Saranga, Y., Fahima, T. 2007. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentration. Physiol. Plant. 129:635–643.CrossRefGoogle Scholar
  10. Gallo, G., Lo Bianco, M., Bognanni, R., Saimbene, G., Orlando, A., Grillo, O., Saccone, R., Venora, G. 2010. Durum wheat bread: Old Sicilian varieties and improved ones. J. Agr. Sci. Tech. 4:10–17.Google Scholar
  11. Giacalone, A., Gianguzza, A., Orecchio, S., Piazzese, D., Dongarrà, G., Sciarrino, S., Varrica, D. 2005. Metals distribution in the organic and inorganic fractions of soil: a case study on soils from Sicily. Chem. Spec. Bioavailab. 17:83–93.CrossRefGoogle Scholar
  12. Golden, M.H.N. 2004. Malnutrition. In: Guandalini, S. (ed.), Textbook of Pediatric Gastroenterology and Nutrition. Taylor & Francis. London, UK.Google Scholar
  13. Gomez-Becerra, H.F., Erdem, H., Yazici, A., Tutus, Y., Torun, B., Ozturk, L., Cakmak, I. 2010a. Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J. Cereal Sci. 52:342–349.CrossRefGoogle Scholar
  14. Gomez-Becerra, H.F., Yazici, A., Ozturk, L., Budak, H., Peleg, Z., Morgounov, A., Fahima, T., Saranga, Y., Cakmak, I. 2010b. Genetic variation and environment stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171:39–52.CrossRefGoogle Scholar
  15. Heidari, B., Padash, S., Dadkhodaie, A. 2016. Variations in micronutrients, bread quality and agronomic traits of wheat landrace varieties and commercial cultivars. Aust. J. Crop. Sci. 10:377–384.CrossRefGoogle Scholar
  16. Hercberg, S., Galan, P., Dupin, H. 1987. Iron defciency in Africa. World Rev. Nutr. Diet. 54:201–236.PubMedCrossRefPubMedCentralGoogle Scholar
  17. IFPRI - International Food Policy Research Institute. 2014. Global Hunger Index. The Challenge of Hidden Hunger. [July 2015].
  18. Lafiandra, D., Riccardi, G., Shewry, P.R. 2014. Improving cereal grain carbohydrates for diet and health. J. Cereal Sci. 59:312–326.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Lowe, N.M., Fekete, K., Decsi, T. 2009. Methods of assessment of zinc status in humans: a systematic review. Eur. J. Clin. Nutr. 89:2040S–2051S.Google Scholar
  20. Lozoff, B., Jimenez, E., Xolf, A.W. 1991. Long term development outcome of infants with iron deficiency. New Eng. J. Med. 325:687–694.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Mastromatteo, M., Danza, A., Lecce, L., Spinelli, S., Lampignano, V., Laverse, J., Conto, F., Del Nobile, M.A. 2014. Effect of durum wheat varieties on bread quality. Int. J. Food Sci. Tech. 49:72–81.CrossRefGoogle Scholar
  22. Nishi, Y. 1996. Zinc and growth. J. Am. Coll. Nutr. 15:340–344.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Padalino, L., Mastromatteo, M., Lecce, L., Spinelli, S., Contò, F., Del Nobile, M.A. 2014. Effect of durum wheat cultivars on physico-chemical and sensory properties of spaghetti. J. Sci. Food. Agric. 94:2196–2204.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Palumbo, M., Blangiforti, S., Cambrea, M., Gallo, G., Licciardello, S., Spina, A. 2008. Sicilian durum wheat landraces for production of traditional breads. Proc. Int. Durum Wheat Symposium “From Seed to Pasta: The Durum Wheat Chain. Bologna, Italy. pp. 132–132.Google Scholar
  25. Palumbo, M., Cambrea, M., Licciardello, S., Pandolfo, A., Pesce, A., Platania, A., Roccasalva, D., Russo, M., Sciacca, F., Spina, A., Virzì, N. 2013. Collezione di frumento duro in ambiente mediterraneo: germoplasma siciliano e internazionale (Durum wheat collection in Mediterranean environment: Sicilian and international germplasm). In: D’Andrea, F. (ed.), Conservazione biodiversità, gestione banche dati e miglioramento genetico – BIODATI (Conservation of biodiversity, data and gene bank). Rome, Italy. pp. 497–512.Google Scholar
  26. Panatta, G.B. 1997. Cereali e patate (Cereals and potatoes). In: Fidanza, F., Liguori, G. (eds), Nutrizione Umana (Human nutrition). Idelson-Gnocchi. Neaples, Italy. pp. 268–289.Google Scholar
  27. Poblaciones, M.J., Rodrigo, S., Santamaría, O., Chen, Y., McGrath, S.P. 2014. Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chem. 46:378–384.CrossRefGoogle Scholar
  28. R Development Core Team 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.Google Scholar
  29. Rousseeuw, P.J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20:53–65.CrossRefGoogle Scholar
  30. Sandström, B. 1997. Bioavailability of zinc. Eur. J. Clin. Nutr. 51:S17–S19.Google Scholar
  31. Sciacca, F., Blanco, C., Salafia, L., Sgarlata, M.T., Di Silvestro, I., Palumbo, M. 2003. Genetic and biochemical characterization of durum wheat Sicilian landraces. Proc. Tenth Int. Wheat Genetics Symposium. Paestum, Italy. pp. 634–636.Google Scholar
  32. Sciacca, F., Cambrea, M., Licciardello, S., Pesce, A., Romano, E., Spina, A., Virzì, N., Palumbo, M. 2014. Evolution of durum wheat: from Sicilian landraces to improved varieties. Options Méditerranéennes, serie A 110:139–145.Google Scholar
  33. Scrimshaw, N.S. 1984. Functional consequences of iron deficiency in human populations. J. Nutr. Sci. Vitaminol. 30:47–63.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Semenov, M.A., Stratonovitch, P., Alghabari, F., Gooding, M.J. 2014. Adapting wheat in Europe for climate change. J. Cereal Sci. 59:245–256.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Shewry P.R. 2009. Wheat. J. Exp. Bot. 60:1537.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Shewry, P.R., Halford, N.G. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53:947–958.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Stewart, C.P., Dewey, K.G., Ashoran, P. 2009. The undernutrition epidemic: an urgent health priority. The Lancet 374:1473.CrossRefGoogle Scholar
  38. Thomas, M., Demeulenaerev, E., Dawsonv, J.C., Rehman Khan, A., Galic, N., Jouanne-Pin, S., Remoué, C., Bonneuil, C., Goldringer, I. 2012. On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat. Evol. Appl. 5:779–795.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Todeschini, R. 1988. Introduzione alla Chemiometria (Introduction to Chemometrics). EdiSES. Naples, Italy. pp. 37–79.Google Scholar
  40. Velu, G., Ortiz-Monasterio, I., Cakmak, I., Hao, Y., Singh, R.P. 2014. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 59:365–372.CrossRefGoogle Scholar
  41. Wang, F., Wang, Z., Kou, C., Ma, Z., Zhao, D. 2016. Responses of wheat yield, macro- and micro-nutrients, and heavy metals in soil and wheat following the application of manure compost on the North China plain. PLoS ONE 11: e0146453. http://doi.org10.1371/journal.pone.0146453PubMedPubMedCentralCrossRefGoogle Scholar
  42. Welch, R.M., Graham, R.D. 1999. A new paradigm for world agriculture: meeting human needs. Productive, sustainable, nutritious. Field Crops Res. 60:1–10.CrossRefGoogle Scholar
  43. Wozniak, A., Makarski, B. 2013. Content of minerals, total protein and wet gluten in grain of spring wheat depending on cropping systems. J. Elem. 18:297–305.Google Scholar
  44. Xu, Y., An, D., Li, H., Xu, H. 2011. Review: Breeding wheat for enhanced micronutrients. Can. J. Plant Sci. 91:231–237.CrossRefGoogle Scholar
  45. Zhao, F.J., Su, Y.H., Dunham, S.J., Rakszegi, M., Bedo, Z., McGrath, S.P., Shewry, P.R. 2009. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 49:290–295.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • F. Sciacca
    • 1
  • M. Allegra
    • 1
  • S. Licciardello
    • 1
  • G. Roccuzzo
    • 1
  • B. Torrisi
    • 1
  • N. Virzì
    • 1
  • M. Brambilla
    • 2
    Email author
  • E. Romano
    • 2
  • M. Palumbo
    • 1
  1. 1.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)Centro di ricerca Cerealicoltura e Colture Industriali, Laboratorio di AcirealeAcireale (Catania)Italy
  2. 2.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)Centro di ricerca Ingegneria e Trasformazioni agroalimentari, sede di TreviglioTreviglio (Bergamo)Italy

Personalised recommendations