Cereal Research Communications

, Volume 45, Issue 3, pp 421–431 | Cite as

Zn and Fe Concentration Variations of Grain and Flag Leaf and the Relationship with NAM-G1 Gene in Triticum timopheevii (Zhuk.) Zhuk. ssp. timopheevii

  • X. G. Hu
  • J. Liu
  • L. Zhang
  • B. H. WuEmail author
  • J. L. Hu
  • D. C. Liu
  • Y. L. Zheng


Grains of 12 accessions of Triticum timopheevii (Zhuk.) Zhuk. ssp. timopheevii (AAGG, 2n = 4x = 28) and one bread wheat cultivar Chinese Spring (CS) and one durum wheat cultivar Langdon (LDN) grown across two years were analyzed for grain iron (Fe) and zinc (Zn) concentrations. All the 12 tested T. timopheevii ssp. timopheevii genotypes showed significantly higher concentration of grain Fe and Zn than CS and LDN. Aboundant genetic variability of both the Fe and Zn concentrations was observed among the T. timopheevii ssp. timopheevii accessions, averagely varied from 47.06 to 90.26 mg kg−1 and from 30.05 to 65.91 mg kg−1, respectively. Their grain Fe and Zn concentrations between years exhibited a significantly positive correlation with the correlation coefficients r = 0.895 and r = 0.891, respectively, indicating the highly genetic stability. Flag leaf possessed twice or three times higher concentrations for both Fe and Zn than grain, and a significantly high positive correlation appeared between the two organs with r = 0.648 for Fe and r = 0.957 for Zn concentrations, respectively, suggesting flag leaves might be indirectly used for evaluating grain Zn and Fe contents. Significant correlations occurred between grain Fe and Zn concentrations, and between grain Zn concentration and the two agronomic traits of plant height and number of spikelets per spike. Both the concentrations were not related to seed size or weight as well as NAM-G1 gene, implying the higher grain Fe and Zn concentrations of T. timopheevii ssp. timopheevii species are not ascribed to concentration effects of seed and the genetic control of NAM-G1 gene. There might be some other biological factors impacting the grain’s Zn and Fe concentrations. These results indicated T. timopheevii ssp. timopheevii species might be a promising genetic resource with high Fe and Zn concentrations for the biofortification of current wheat cultivars.


T. timopheevii ssp. timopheevii iron zinc NAM-G1 gene biofortification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2017_4503421_MOESM1_ESM.pdf (236 kb)
Zn and Fe Concentration Variations of Grain and Flag Leaf and the Relationship with NAM-G1 Gene in Triticum timopheevii (Zhuk.) Zhuk. ssp. timopheevii


  1. Bouis, H.E. 2007. The potential of genetically modified food crops to improve human nutrition in developing countries. J. Dev. Stud. 43:79–96.CrossRefGoogle Scholar
  2. Cakmak, I., Torun, A., Millet, E., Feldman, M., Fahima, T., Korol, A., Nevo, E., Braun, H.J., Özkan, H. 2004. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 50:1047–1054.CrossRefGoogle Scholar
  3. Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Plant Soil 302:1–17.CrossRefGoogle Scholar
  4. Chatzav, M., Peleg, Z., Ozturk, L., Yazici, A., Fahima, T., Cakmak, I., Saranga, Y. 2010. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann. Bot. 105:1211–1220.CrossRefGoogle Scholar
  5. Chhuneja, P., Dhaliwal, H.S., Bains, N.S., Singh, K. 2006. Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breeding 125:529–531.CrossRefGoogle Scholar
  6. Distelfeld, A., Uauy, C., Olmos, S., Schlatter, A.R., Dubcovsky, J., Fahima, T. 2004. Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350kb region on rice chromosome 2. Funct. Integr. Genomics 4:59–66.CrossRefGoogle Scholar
  7. FAO 2002. The state of food insecurity in the world. Rome, Italy.Google Scholar
  8. Gomez-Becerra, H.F., Erdem, H., Yazici, A., Tutus, Y., Torun, B., Ozturk, L., Cakmak, I. 2010a. Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J. Cereal Sci. 52:342–349.CrossRefGoogle Scholar
  9. Gomez-Becerra, H.F., Yazici, A., Ozturk, L., Budak, H., Peleg, Z., Morgounov, A., Fahima, T., Saranga, Y., Cakmak, I. 2010b. Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171:39–52.CrossRefGoogle Scholar
  10. He, Z.H., Yang, J., Zhang, Y., Quail, K.J., Peña, R.J. 2004. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica 139:257–267.CrossRefGoogle Scholar
  11. Hotz, C., Brown, K.H. 2004. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 25:194–204.CrossRefGoogle Scholar
  12. Hu, X.G., Wu, B.H., Liu, D.C., Wei, Y.M., Gao, S.B., Zheng, Y.L. 2013. Variation and their relationship of NAM-G1 gene and grain protein content in Triticum timopheevii Zhuk. J. Plant Physiol. 170:330–337.CrossRefGoogle Scholar
  13. Jorgensen, J.H., Jensen, C.J. 1973. Gene Pm6 for resistance to powdery mildew in wheat. Euphytica 22:423.CrossRefGoogle Scholar
  14. Joshi, A.K., Crossa, J., Arun, B., Chand, R., Trethowan, R., Vargas, M., Ortiz-Monasterio, I. 2010. Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic Plains of India. Field Crop. Res. 116:268–277.CrossRefGoogle Scholar
  15. Lee, S., An, G. 2009. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Envir. 32:408–416.CrossRefGoogle Scholar
  16. Morgounov, A., Gómez-Becerra, H.F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Ozturk, L., Cakmak, I. 2007. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203.CrossRefGoogle Scholar
  17. Neełam, K., Rawat, N., Tiwari, V.K., Kumar, S., Chhuneja, P., Singh, K., Randhawa, G.S., Dhaliwal, H.S. 2011. Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Mol. Breeding 28:623–634.CrossRefGoogle Scholar
  18. Oury, F.X., Leenhardt, F., Rémésy, C., Chanliaud, E., Duperrier, B., Balfourier, F., Charmet, G. 2006. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur. J. Agron. 25:177–185.CrossRefGoogle Scholar
  19. Rawat, N., Tiwari, V.K., Neelam, K., Randhawa, G.S., Chhuneja, P., Singh, K., Dhaliwal, H.S. 2009a. Development and characterization of Triticum aestivum wheat-Aegilops kotschyi amphiploids with high grain iron and zinc contents. Plant Genet. Resour. 7:271–280.CrossRefGoogle Scholar
  20. Rawat, N., Tiwari, V.K., Singh, N., Randhawa, G.S., Singh, K., Chhuneja, P., Dhaliwal, H.S. 2009b. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet. Resour. Crop Evol. 56:53–64.CrossRefGoogle Scholar
  21. Salim-Ur-Rehman., Huma, N., Tarar, O.M., Shah, W.H. 2010. Efficacy of non-heme iron fortified diets: a review. Crit. Rev. Food Sci. Nutr. 50:403–413.CrossRefGoogle Scholar
  22. Sun, L., Yao, F., Li, C., Li, L., Liu, B., Gao, Q. 2001. RAPD analysing of CMS-T, K, V mtDNAs and cloning of mtDNA fragments associated with CMS-K in wheat. Acta Agrono. Sinica 27:144–148.Google Scholar
  23. Trethowan, R.M., Reynolds, M., Sayre, K., Ortiz-Monasterio, I. 2005. Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann. Appl. Biol. 146:405–413.CrossRefGoogle Scholar
  24. Uauy, C., Brevis, J.C., Dubcovsky, J. 2006a. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J. Exp. Bot. 57:2785–2794.CrossRefGoogle Scholar
  25. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J. 2006b. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301.CrossRefGoogle Scholar
  26. Velu, G., Singh, R.P., Huerta-Espino, J., Peña, R.J., Arun, B., Mahendru-Singh, A., Yaqub Mujahid, M., Sohu, V.S., Mavi, G.S., Crossa, J., Alvarado, G., Joshi, A.K., Pfeiffer, W.H. 2012. Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crop. Res. 137:261–267.CrossRefGoogle Scholar
  27. Velu, G., Ortiz-Monasterio, I., Cakmak, I., Hao, Y., Singh, R.P. 2014. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 59:365–372.CrossRefGoogle Scholar
  28. Wan, Y., Wang, D., Shewry, P.R., Halford, N.G. 2002. Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrica. Theor. Appl. Genet. 104:828–839.CrossRefGoogle Scholar
  29. Wang, S., Yin, L., Tanaka, H., Tanaka, K., Tsujimoto, H. 2011. Wheat-Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breeding Sci. 61:189–195.CrossRefGoogle Scholar
  30. Waters, B.M., Uauy, C., Dubcovsky, J., Grusak, M.A. 2009. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Exp. Bot. 60:4263–4274.CrossRefGoogle Scholar
  31. Welch, R.M., Graham, R.D. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55:353–364.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • X. G. Hu
    • 1
    • 2
  • J. Liu
    • 1
  • L. Zhang
    • 3
  • B. H. Wu
    • 1
    Email author
  • J. L. Hu
    • 1
  • D. C. Liu
    • 1
  • Y. L. Zheng
    • 1
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityWenjiang, Chengdu, SichuanP. R. China
  2. 2.Center of Wheat ResearchHenan Institute of Science and TechnologyXinxiang, HenanP. R. China
  3. 3.Department of Biology and ScienceSichuan Agricultural UniversityYa’an, SichuanP. R. China

Personalised recommendations