Cereal Research Communications

, Volume 45, Issue 3, pp 355–368 | Cite as

The Expression of Dehydrin Genes and the Intensity of Transpiration in Drought-stressed Maize Plants

  • J. KlimešováEmail author
  • L. Holková
  • T. Středa


The stress reaction of maize plants was evaluated in relation to drought stress intensity and to growth stages by assessing the transpiration intensity and the expression of two dehydrin genes, DHN1 and DHN2. The maize plants were grown under four different watering conditions: well-watered (control), mild stress, moderate stress and high stress. The sap flow values were taken as an indicator of plant stress reactions at the transpiration level. A significant correlation between the average diurnal values of sap flow and the volumetric soil moisture appeared only for the moderate stress condition (R = 0.528) and for the high stress condition (R = 0.395). Significant increases in the expression of DHN1 and DHN2 (DHN1 = 105-fold and DHN2 = 103-fold) were observed primarily for the high stress condition compared to the control. Differences in the stress reactions at the DHN1 gene expression level were detected for all the experimental drought stress conditions. A relatively close relationship between the levels of expression of both genes and the values of the sap flow was observed during the initial stage of the stress (R = –0.895; R = –0.893). The severity of water stress and transpiration intensity significantly affected certain biometric and yield parameters of maize. Higher DHN genes expression at the ripening stage was related to lower grain and dry biomass yield. The results indicated that DHN gene expression assessment in maize and evaluation of the changes in transpiration expressed by the sap flow could be considered appropriate indicators of stress intensity while the DHN gene expression assessment appeared to be more sensitive than evaluation of the changes in transpiration, mainly in the initial phases of stress response.


drought stress sap flow meteorological factors DHN1 DHN2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2017_4503355_MOESM1_ESM.pdf (151 kb)
The Expression of Dehydrin Genes and the Intensity of Transpiration in Drought-stressed Maize Plants


  1. Aguado, A., Capote, N., Romero, F., Dodd, I.C., Colmenero-Flores, J.M. 2014. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement. Plant Sci. 227:37–44.CrossRefGoogle Scholar
  2. Badicean, D., Scholten, S., Jacota, A. 2011. Transcriptional profiling of Zea mays genotypes with different drought tolerances – new perspectives for gene expression markers selection. Maydica 56:61–69.Google Scholar
  3. Benešová, M., Holá, D., Fischer, L., Jedelský, P.L., Hnilička, F., Wilhelmová, N., Rothová, O., Kočová, M., Procházková, D., Honnerová, J., Fridrichová, L., Hniličková, H. 2012. The physiology and proteomics of drought tolerance in maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7(6):e38017.CrossRefGoogle Scholar
  4. Campbell, S.A., Close, T.J. 1997. Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytologist 137:61–74.CrossRefGoogle Scholar
  5. Capelle, V., Remoué, C., Moreau, L., Reyss, A., Mahé, A., Massonneau, A., Falque, M., Charcosset, A., Thévenot, C., Rogowsky, P., Coursol, S., Prioul, J.L. 2010. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels. BMC Plant Biology 10. doi:10.1186/1471-2229-10-2.Google Scholar
  6. Chazen, O., Neumann, P.M. 1994. Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea mays L.) leaves are primary responses to polyethylene glycol-induced water deficits. Plant Physiol. 104:1385–1392.CrossRefGoogle Scholar
  7. Close, T.J. 1997. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 100:291–296.CrossRefGoogle Scholar
  8. Doorenbos, J., Kassam, A.H. 1979. Yield response to water. FAO Irrigation and drainage paper No. 33. Food and Agriculture Organization of the United Nations. Rome, Italy.Google Scholar
  9. Ganeshan, S., Denesik, T., Fowler, D.B., Chibbar, R.N. 2009. Quantitative expression analysis of selected low temperature-induced genes in autumn-seeded wheat (Triticum aestivum L.) reflects changes in soil temperature. Environ. Exp. Bot. 66:46–53.CrossRefGoogle Scholar
  10. Gavloski, J.E., Whitfield, G.H., Ellis, C.R. 1992. Effect of restricted watering on sap flow and growth in corn (Zea mays L.). Can. J. Plant Sci. 72:361–368.CrossRefGoogle Scholar
  11. Gholipoor, M., Sinclair, T.R., Raza, M.A.S., Löffler, C., Cooper, M., Messina, C.D. 2013. Maize hybrid variability for transpiration decrease with progressive soil drying. J. of Agron. and Crop Sci. 199:23–29.CrossRefGoogle Scholar
  12. Gómez-Anduro, G., Ceniceros-Ojeda, E.A., Casados-Vázquez, L.E., Bencivenni, C., Sierra-Beltrán, A., Murillo-Amador, B., Tiessen, A. 2011. Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73). Plant Mol. Biol. 77:159–183.CrossRefGoogle Scholar
  13. Grzesiak, M.T., Marcińska, I., Janowiak, F., Rzepka, A., Hura, T. 2012. The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol. Plant. 34:1757–1764.CrossRefGoogle Scholar
  14. Grzesiak, M.T., Waligórski, P., Janowiak, F., Marcińska, I., Hura, K., Szczyrek, P., Głąb, T. 2013. The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes. Acta Physiol. Plant. 35:549–565.CrossRefGoogle Scholar
  15. Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Korff, M., Varshney, R.K., Graner, A., Valkoun, J. 2009. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J. Exp. Bot. 60:3531–3544.CrossRefGoogle Scholar
  16. Jacovides, C.P., Tymvios, F.S., Asimakopoulos, D.N., Theofilou, K.M., Pashiardes, S. 2003. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor. Appl. Climatology 74:227–233.CrossRefGoogle Scholar
  17. Jamieson, P.D., Francis, G.S., Wilson, D.R., Martin, R.J. 1995. Effects of water deficits on evapotranspiration from barley. Agric. For. Meteorol. 76:41–58.CrossRefGoogle Scholar
  18. Jia, J., Fu, J., Zheng, J., Zhou, X., Huai, J., Wang, J., Wang, M., Zhang, Y., Chen, X., Zhang, J., Zhao, J., Su, Z., Lv, Y., Wang, G. 2006. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J. 48:710–727.CrossRefGoogle Scholar
  19. Klimešová, J., Středová, H., Středa, T. 2013. Maize transpiration in response to meteorological conditions. Contributions to Geophysics and Geodesy 43:225–236.CrossRefGoogle Scholar
  20. Koag, M.C., Fenton, R.D., Wilkens, S., Close, T.J. 2003. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131:309–316.PubMedGoogle Scholar
  21. Kučera, J., Čermák, J., Penka, M. 1977. Improved thermal method of continual recording the transpiration flow rate dynamics. Biologia Plantarum 19:413–420.CrossRefGoogle Scholar
  22. Leitner, D., Meunier, F., Bodner, G., Javaux, M., Schnepf, A. 2014. Impact of contrasted maize root traits at flowering on water stress tolerance – A simulation study. Field Crops Res. 165:125–137.CrossRefGoogle Scholar
  23. Li, X-H., Liu, X-D., Li, M-S., Zhang, S.-H. 2003. Identification of quantitive trait loci for anthesis-silking interval and yield components under drought stress in maize. Acta Botanica Sinica 45:852–857.Google Scholar
  24. Matejka, F., Hurtalová, T., Rožnovský, J., Chalupníková, B. 2005. Effect of soil moisture on evapotranspiration of a maize stand during one growing season. Contributions to Geophysics and Geodesy 35:219–228.Google Scholar
  25. Meier, U. 1997. BBCH-Monograph. Growth stages of plants – Entwicklungsstadien von Pflanzen – Estadios de las plantas – Développement des Plantes. Blackwell Wissenschaftsverlag. Berlin, Germany. 622 p.Google Scholar
  26. Novák, V., Hurtalová, T., Matejka, F. 2005. Predicting the effects of soil water content and soil water potential on transpiration of maize. Agric. Water Manage. 76:211–223.CrossRefGoogle Scholar
  27. Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45.CrossRefGoogle Scholar
  28. Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Letters 26:509–515.CrossRefGoogle Scholar
  29. Ribaut, J.M., Hoisington, D.A., Deutsch, J.A., Jiang, C., Gonzalez de Leon, D. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. I. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92:906–914.Google Scholar
  30. Tommasini, L., Svensson, J.T., Rodriguez, E.M., Wahid, A., Malatrasi, M., Kato, K., Wanamaker, S., Resnik, J., Close, T.J. 2008. Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Functional and Integrative Genomics 8:387– 405.CrossRefGoogle Scholar
  31. Valluru, R., Davies, W.J., Reynolds, M.P., Dodd, I.C. 2016. Foliar abscisic acid to ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Frontiers in Plant Science 7:461.CrossRefGoogle Scholar
  32. Vilardell, J., Goday, A., Freire, M.A., Torrent, M., Martínez, M.C., Torné, J.M., Pagès, M. 1991. Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol. Biol. 14:423–432.CrossRefGoogle Scholar
  33. Vítámvás, P., Urban, M.O., Škodáček, Z., Kosová, K., Pitelková, I., Vítámvás, J., Renaut, J., Prášil, I.T. 2015. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Frontiers in Plant Science 6:479.CrossRefGoogle Scholar
  34. Wood, A.J., Goldsbrough, P.B. 1997. Characterization and expression of dehydrins in water-stressed Sorghum bicolor. Physiol. Plant. 99:144–152.CrossRefGoogle Scholar
  35. Wu, Y., Huang, M., Warrington, D.N. 2011a. Responses of different physiological indices for maize (Zea mays) to soil water availability. Pedosphere 21:639–649.CrossRefGoogle Scholar
  36. Wu, Y., Huang, M., Warrington, D.N. 2011b. Growth and transpiration of maize and winter wheat in response to water deficits in pots and plots. Environ. Exp. Bot. 71:65–71.CrossRefGoogle Scholar
  37. Zheng, J., Zhao, J., Tao, Y., Wang, J., Liu, Y., Fu, J., Jin, Y., Gao, P., Zhang, J., Bai, Y., Wang, G. 2004. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol. Biol. 55:807–823.CrossRefGoogle Scholar
  38. Zinselmeier, Ch., Sun, Y., Helentjaris, T., Beatty, M., Yang, S., Smith, H., Habben, J. 2002. The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crops Res. 75:111–121.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic

Personalised recommendations