Advertisement

Cereal Research Communications

, Volume 45, Issue 2, pp 296–306 | Cite as

Properties of Grain, Flour and Dough in Bread Wheat Lines with Aegilops markgrafii Introgressions

  • L. V. ShchukinaEmail author
  • T. A. Pshenichnikova
  • A. K. Chistyakova
  • E. K. Khlestkina
  • A. Börner
Article

Abstract

Various milling parameters, wet gluten content and key dough properties were analyzed for two sister lines of bread wheat with Ae. markgrafii introgressions in genetic background of cultivar Alcedo carrying a set of sub-chromosomal alien segments on chromosomes 2AS, 2BS, 3BL, 4AL and 6DL. The lines revealed higher grain vitreousness, larger particle size of flour, and higher wet gluten content in grain compared to cv. Alcedo. The flour from these lines also showed excellent water absorption and developed more resilient dough. The introgressions in the Alcedo genome caused no reduction in 1,000-grain weight. General improvement of the grain technological properties appears to be the result of introgressions into 2AS, 2BS and 3BL chromosomes. Coincidence of locations of Ae. markgrafii introgressions in chromosome with the QTLs positions for technological traits, revealed in bread wheat mapping populations, is discussed.

Keywords

bread wheat introgressions Aegilops markgrafii vitreousness of grain flour particle size gluten content in grain physical and mixing properties of dough 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2017_4502296_MOESM1_ESM.pdf (166 kb)
Properties of Grain, Flour and Dough in Bread Wheat Lines with Aegilops markgrafii Introgressions

References

  1. Anonymous 1988. Method of state variety testing of crops. Gosagroprom. Moscow, Russia. (in Russian)Google Scholar
  2. Berkutova, N.S. 1991. The methods of evaluation and formation of grain quality. Rosagropromizdat. Moscow, Russia. pp. 10–22. (in Russian)Google Scholar
  3. Budashkina, E.B., Dunduk, I.G., Ermakova, M.F. 1977. Hybrid 21 – a new form of strong spring wheat. Izvestiya SO AN SSSR (ser. biol. nauk) 1:80–83 (in Russian).Google Scholar
  4. Carter, E.H., Garland-Campbell, K., Morris, C.F., Kidwell, K.K. 2012. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivumL.) population. Theor. Appl. Genet. 124:1079–1096.CrossRefGoogle Scholar
  5. De Pace, C., Snidaro, D., Ciaffi, M., Vittori, D., Ciofo, A., Cenci, A., Tanzarella, O.A., Qualset, C.O., Scarascia-Mugnozza, G.T. 2001. Introgression of Dasypyrum villosumchromatin into common wheat improves grain protein quality. Euphytica 117:67–75.CrossRefGoogle Scholar
  6. Dospekhov, B.A. 1985. The technique of field experiment (with the basic statistical processing of experimental results). Agropromizdat. Moscow, Russia. (in Russian)Google Scholar
  7. Dunduk, I.G., Ermakova, M.F. 1978. Grain hardness trait as indicator of wheat quality. Sibirskiy Vestnik selskokhozyaistvennoi nauki 1:15–19. (in Russian)Google Scholar
  8. Eagles, H.A., McLean, R.B., Eastwood, R.F., Appelbee, M.-J., Cane, K., Martin, P.J., Wallwork, H. 2014. High-yielding lines of wheat carrying Gpc-B1adapted to Mediterranean-type environments of the south and west of Australia. Crop Pasture Sci. 65:854–861.CrossRefGoogle Scholar
  9. Ermakova, M.F., Chistyakova, A.K., Shchukina, L.V., Morozova, E.V., Khlestkina, E.K., Pshenichnikova T.A. 2008. Diversity of Siberian bread wheat cultivars on grain quality in dependence of the breeding period. EWAC Newsletter, Proc. 14th Intern. EWAC Conference, 6–10 May 2007. Istanbul, Turkey. pp. 174–176.Google Scholar
  10. Friebe, B., Jang, J., Raupp, W.J., McIntosh, R.A., Gill, B.S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87.CrossRefGoogle Scholar
  11. Gill, B.S., Friebe, B.R., White, F. 2011. Alien introgressions represent a rich source of genes for crop improvement. Proc. Natl Acad. Sci. USA 108:7657–7658.CrossRefGoogle Scholar
  12. Groos, C., Robert, N., Bervas, E., Charmet, G. 2003. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 106:1032–1040.CrossRefGoogle Scholar
  13. Iqbal, N., Eticha, F., Khlestkina, E.K., Weidner, A., Röder, M.S., Börner, A. 2007. The use of simple sequence repeat (SSR) markers to identify and map alien segments carrying genes for effective resistance to leaf rust in bread wheat.Plant Genetic Resources: Characterization Utilization 5:100–103.CrossRefGoogle Scholar
  14. Khlestkina, E.K., Giura, A., Röder, M.S., Börner, A. 2009. A new gene controlling the flowering response to photoperiod in wheat. Euphytica 165:579–585.CrossRefGoogle Scholar
  15. Kozmina, N.P. 1969. Grain. Moscow, Russia. (in Russian)Google Scholar
  16. Kulkarni, R.G., Ponte, J.G., Kulp, K. 1987. Significance of gluten content as index of flour quality. Cereal Chem. 64:1–3.Google Scholar
  17. Kumar, J., Jaiswal, V., Kumar, A., Kumar, N., Mir, R.R., Kumar, S., Dhariwal, R., Tyagi, S., Khandelwal, M., Prabhu, K.V., Prasad, R., Balyan, H.S., Gupta, P.K. 2011. Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crops Res. 123:226–233.CrossRefGoogle Scholar
  18. Kunert, A., Naz, A.A., Dedeck, O., Pillen, K., Leon, J. 2007. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidumssp. dicoccoides× T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor. Appl. Genet. 115:683–695.Google Scholar
  19. Lapochkina, I.F., Iordanskaya, I.V., Yatchevskaya, G.L., Zemchuzhina, A.I., Kovalenko, D.E., Solomatin, D.A., Kolomiets, T.M. 2003. Identification of alien genetic material and genes of resistance to leaf rust in wheat (Triticum aestivumL.) stocks. Proc. 10th Intern. Wheat Genet. Symp. Paestum, Italy. pp. 1190–1192.Google Scholar
  20. Leonova, I.N., Röder, M.S., Kalinina, N.P., Budashkina, E.B. 2008. Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum× Triticum timopheeviiintrogression lines. Russian J. of Genet. 44:1431–1437.CrossRefGoogle Scholar
  21. Li, Y., Song, Y., Zhou, R., Branlard, G., Jia, J. 2009. Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breeding 128:235–243.CrossRefGoogle Scholar
  22. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Roger, J., Morris, C., Appels, R., Xia, X.C., 2013. Catalogue of gene symbols for wheat. 12th Int. Wheat Genet. Symp. Yokohama, Japan. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/GeneCatalogueIntroduction.pdfGoogle Scholar
  23. Olmos, S., Distelfeld, A., Chicaiza, O., Schlatter, A.R., Fahima, T., Echenique, V., Dubcovsky, J. 2003. Precise mapping of a locus affecting grain protein content in durum wheat. Theor. Appl. Genet. 107:1243–1251.CrossRefGoogle Scholar
  24. Parker, G.D., Chalmers, K.J., Rathjen, A.J., Langridge, P. 1999. Mapping loci associated with milling yield in wheat (Triticum aestivumL.). Mol. Breeding 5:561–568.CrossRefGoogle Scholar
  25. Placido, D.F., Campbell, M.T., Folsom, J.J., Cui, X., Kruger, G.R., Baenziger, P.S., Walia, H. 2013. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol. 161:1806–1819.CrossRefGoogle Scholar
  26. Pshenichnikova, T.A., Ermakova, M.F., Chistyakova, A.K., Shchukina, L.V., Berezovskaya, E.V., Lohwasser, U., Röder, M.S., Börner, A. 2008. Mapping of the quantitative trait loci (QTL) associated with grain quality characteristics of the bread wheat grown under different environmental conditions. Russian J. of Genetics 44:74–84.CrossRefGoogle Scholar
  27. Pshenichnikova, T.A., Simonov, A.V., Ermakova, M.F., Chistyakova, A.K., Shchukina, L.V., Morozova, E.V. 2010. The effect on grain endosperm structure of an introgression from Aegilops speltoidesTausch into chromosome 5A of bread wheat. Euphitica 175:315–322.CrossRefGoogle Scholar
  28. Pshenichnikova, T.A., Simonov, A.V., Shchukina, L.V., Morozova, E.V., Chistyakova, A.K., Börner, A. 2015. Enlargement of the genetic diversity for grain quality in bread wheat through alien introgression. (Chapter 32). In: Ogihara, Y., Takumi, S., Handa, H. (eds), Advances in Wheat Genetics: From Genome to Field. Proceedings of the 12th International Wheat Genetics Symposium. Springer Japan. Tokyo, Japan. pp. 287–292.Google Scholar
  29. Reynolds, M., Dreccer, F., Trethowan, R. 2007. Drought-adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot. 58:177–186.CrossRefGoogle Scholar
  30. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  31. Shibaev, P.N., Guzev, I.S., Samsonov, M.M. 1974. Vitreousness and structural–mechanical properties of wheat grain. Selektsia i semenovodstvo 3:22–26.Google Scholar
  32. Simón, M.R., Ayala, F.M., Cordo, C.A., Röder, M.S., Börner, A. 2007. The use of wheat/goatgrass introgression lines for the detection of gene(s) determining resistance to Septoria tritici blotch (Micosphaerella graminicola). Euphytica 154:249–254.CrossRefGoogle Scholar
  33. Tabbita, F., Lewis, S., Vouilloz, J.P., Ortega, M.A., Kade, M., Abbate, P.E., Barneix, A.J. 2013. Effects of the Gpc-B1locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breeding 132:48–52.CrossRefGoogle Scholar
  34. Vishwakarma, M.K., Mishra, V.K., Gupta, P.K., Yadav, P.S., Kumar, H., Joshi, A.K. 2014. Introgression of the high grain protein gene Gpc-B1in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Curr. Plant Biol. 1:60–67.CrossRefGoogle Scholar
  35. Weidner, A. 2004. Selection and characterization of wheat – Ae. markgrafiiintrogression lines resistant to leaf rust. PhD Thesis. Martin-Luther-University. Halle Wittenberg, Halle (Saale), Germany.Google Scholar
  36. Weidner, A., Schubert, V., Eticha, F., Iqbal, N., Khlestkina, E.K., Röder, M.S., Börner, A. 2008. Symptom expression and chromosomal location of leaf rust resistance from Aegilops markgrafiiintrogressed into hexaploid wheat background. Proc. 14th Intern. EWAC Conf., 6–10 May 2007. Istanbul, Turkey. EWAC Newsletter, pp. 79–82.Google Scholar
  37. Weidner, A., Röder, M.S., Börner, A. 2012. Mapping wheat powdery mildew resistance derived from Aegilops markgrafii. Plant Genetic Resources: Characterization and Utilization 10:137–140.CrossRefGoogle Scholar
  38. Zhang, W., Chao, S., Manthey, F., Chicaiza, O., Brevis, J.C., Echenique, V., Dubcovsky, J. 2008. QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor. Appl. Genet. 117:1361–1377.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

Authors and Affiliations

  • L. V. Shchukina
    • 1
    Email author
  • T. A. Pshenichnikova
    • 1
  • A. K. Chistyakova
    • 1
  • E. K. Khlestkina
    • 1
    • 2
  • A. Börner
    • 3
  1. 1.Institute of Cytology and Genetics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations