Analysis of Defense Genes Expression in Maize upon Infection with Peronosclerospora sorghi

Abstract

Downy mildew, caused by Peronosclerospora sorghi is one of the important diseases affecting maize (Zea mays L.) production worldwide. Several downy mildew resistant maize lines have been identified. However, variability in the degree of resistance among maize genotypes to P. sorghi has been reported. In the present study the molecular basis of resistance of maize to P. sorghi was studied by using differential-display reverse transcription PCR (DDRT-PCR) technique. Maize seedlings of downy mildew resistant (MAI 756) and susceptible (CM 500) cultivars at two-leaf stage were inoculated with P. sorghi and leaf samples were collected at 0, 3 and 5 days after inoculation and analyzed for differentially expressed cDNAs using cDNA-RAPD approach. A total of 17 cDNA fragments corresponding to transcripts that showed alterations during the defence response of maize to P. sorghi were identified. Genes involved in signal transduction and several genes with unknown functions were found to be upregulated in maize after infection by P. sorghi. Among 35 random primers tested, OPD-05 has identified a differentially expressed cDNA coding for serine/threonine kinase protein in resistant maize genotype. Constitutive and high level expression of serine/threonine kinase gene was observed in the uninoculated plants of resistant genotype, whereas no expression of this gene was observed in uninoculated plants of susceptible genotype. However, the transcript level was induced 3 days after inoculation in the susceptible genotype and slightly reduced 5 days after inoculation. This study represents the first identification of maize serine/threonine kinase gene that is upregulated following infection by P. sorghi.

References

  1. Adhikari, T.B., Balaji, B., Breeden, J., Goodwin, S.B. 2007. Resistance of wheat to Mycosphaerella graminicolainvolves early and late peaks of gene expression. Physiol. Plant Pathol. 71:55–68.

    Article  CAS  Google Scholar 

  2. Al-Taweel, K., Fernando, W.G.D. 2011. Differential gene expression is a promising tool for understanding of host–pathogen interactions. Amer. J. Plant Sci. Biotech. 5:1–10.

    Google Scholar 

  3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bachem, C.W.B., van der Hoefen, R.S., de Bruijn, S.M., Vreugdenhil, D., Zabeau, M., Visser, R.G.F. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J. 9:745–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benitez, Y., Botella, M.A., Trapero, A., Alsalimiya, M., Caballero, J.L., Dorado, G., Munoz-Blanco, J. 2005. Molecular analysis of the interaction between Olea europaeaand the biotrophic fungus, Spilocaea oleagina.Mol. Plant. Pathol. 6:425–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Birch, P.R.J., Kamoun, S. 2000. Studying interaction transcriptomes: coordinated analyses of gene expression during plant–microorganism interactions. In: Wood, R. (ed.), New Technologies for Life Sciences: A Trends Guide. Elsevier Science. New York, USA. pp. 77–82.

  7. Boller, T., Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors.Annu. Rev. Plant Biol. 60:379–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy. M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S.R., Moon, K., Burcham, T., Pallas, M., DuBridge, R.B., Kirchner, J., Fearon, K., Mao, J., Corcoran, K. 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18:630–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caldo, R.A., Nettleton, D., Peng, J., Wise, R.P. 2006. Stage-specific suppression of basal defense discriminates barley plants containing fast and delayed-acting mlapowdery mildew resistance alleles. Mol. Plant Microbe Interact. 19:939–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clarke, J.D., Zhu, T. 2006. Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. Plant J. 45:630–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Collinge, M., Boller, T. 2001. Differential induction of two potato genes, Stprx2and StNACin response to infection by Phytophthora infestansand wounding. Plant Mol. Biol. 46:521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dixon, R.A. 1986. The phytoalexin response: Elicitation, signalling and control of host gene expression.Biol. Rev. 61:239–291.

    Article  CAS  Google Scholar 

  13. Dodds, P.N., Rathjen, J.P. 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews 11:539–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doehlemann, G., Wahl, R., Horst, R.J., Voll, L.M., Usadel, B., Poree, F., Stitt, M., Pons-Kuhnemann, J., Sonnewald, U., Kahmann, R. 2008. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph, Ustilago maydis. Plant J. 56:181–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Donson, J., Fang, Y., Espiritu-Santo, G., Xing, W., Salazar, A., Miyamoto, S., Armendarez, V., Volkmuth, W. 2002. Comprehensive gene expression analysis by transcript profiling. Plant Mol. Biol. 48:75–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. George, M.L., Regalado, E., Warburton, M., Vasal, S., Hoisington, D. 2004. Genetic diversity of maize inbred lines in relation to downy mildew. Euphytica 135:145–155.

    Article  CAS  Google Scholar 

  17. Gomez-Gomez, L., Boller, T. 2000. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis.Mol. Cell. 5:1003–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gururani, M.A., Venkatesh, J., Upadhyaya, C.P., Nookaraju, A., Pandey, S.K., Park, S.W. 2012. Plant disease resistance genes: Current status and future directions. Physiol. Mol. Plant Pathol. 78:51–65.

    Article  CAS  Google Scholar 

  19. Hardie, D.G. 1999. Plant protein serine/threonine kinases: Classification and function. Annu. Rev. Plant Physiol. Plant Mol. Biol.50:97–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jagoueix-Eveillard, S., Tarendeau, F., Guolter, K., Danet, J.L., Bové, J.M., Garnier, M. 2001. Catharanthus roseusgenes regulated differentially by mollicute infections. Mol. Plant-Microbe Interact. 14:225–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, J.D., Dangl, J.L. 2006. The plant immune system. Nature 444:323–329.

    Article  CAS  Google Scholar 

  22. Kim, S., Park, J., Park, S.Y., Mitchell, T.K., Lee, Y.H. 2010. Identification and analysis of in planta expressed genes of Magnaporthe oryzae. BMC Genomics 11:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang, P. 2002. A decade of differential display. BioTechniques 33:338–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang, P., Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Linthorst, H.J.M. 1991. Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci. 10:123–150.

    Article  CAS  Google Scholar 

  26. Lovejot, K., Senthil, N., Bharthi, M., Govindraju, P., Rabindran, R., Nagarajan, P. 2015. Transcriptomic analysis by cDNA RAPD profiling of differentially expressed genes upon infection of Mungbean Yellow Mosaic Virus.Indian Res. J. Genet. Biotech. 7:1–10.

    Google Scholar 

  27. Marcel, S., Sawers, R., Oakeley, E., Angliker, H., Paszkowski, U. 2010. Tissue adapted invasion strategies of the rice blast fungus, Magnaporthe oryzae. Plant Cell 22:3177–3187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D., Tanksley, S.D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mittler, R., Lam, E. 1995. Identification, characterization and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7:1951–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S., Valent, B. 2009. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4, as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munoz, C.I., Bailey, A.M. 1998. A cutinase-encoding gene from Phytophthora capsiciisolated by differential-display RT-PCR. Curr. Genet. 33:225–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narayana, Y.D., Mughogho, L.K., Bandyopadhyay, R. 1995. Evaluation of greenhouse inoculation techniques to screen sorghum for resistance to downy mildew. Euphytica 86:49–53.

    Article  Google Scholar 

  33. Narsai, R., Wang, C., Chen, J., Wu, J., Shou, H., Whelan, J. 2013. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics 14:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Osbourn, A.E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rashid, Z., Zaidi, P.H., Vinavan, M.T., Sharma, S.S., Setty, T.A.S. 2013. Downy mildew resistance in maize (Zea maysL.) across Peronosclerosporaspecies in low land tropical Asia. Crop Prot. 43:183–191.

    Article  Google Scholar 

  36. Sambrook, J.E., Fritsch, F., Maniatis, T. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY, USA:

  37. Seehaus, K., Tenhaken, R. 1998. Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringaepv. glycinea. Plant Mol. Biol. 38:1225–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimkets, R.A., Lowe, D.G., Tai, J.T., Sehl, P., Jin, H., Yang, R., Predki, P.F., Rothberg, B.E., Murtha, M.T., Roth, M.E., Shenoy, S.G., Windemuth, A., Simpson, J.W., Simons, J.F., Daley, M.P., Gold, S.A., McKenna, M.P., Hillan, K., Went, G.T., Rothberg, J.M. 1999. Gene expression analysis by transcript profiling coupled to a gene database query. Nat. Biotechnol. 17:798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Showalter, A.M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5:9–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sireesha, Y., Meena, S., Velazhahan, R. 2015. Metabolic response of downy mildew resistant and susceptible maize genotypes to Peronosclerospora sorghi. J. Pure Appl. Microbiol. 9:1355–1362.

    CAS  Google Scholar 

  41. Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C., Ronald, P. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21.Science 270:1804–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Torregrosa, C., Cluzet, S., Fournier, J., Huguet, T., Gamas, P., Prosperi, J.M., Esquerre Tugaye, M.T., Dumas, B., Jacquet, C. 2004. Cytological, genetic and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatulaand Colletotrichum trifolii. Mol. Plant Microbe Interact.17:909–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tripathi, A., Aggarwal, R., Yadav, A. 2013. Differential expression analysis of defense-related genes responsive to Tilletia indicainfection in wheat. Turk. J. Biol. 37:606–613.

    Article  CAS  Google Scholar 

  44. Vargas, W.A., Martin, J.M., Rech, G.E., Rivera, L.P., Benito, E.P., Diaz-Mınguez, Thon, M.R., Sukno, S.A. 2012. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotrichum graminicola in maize. Plant Physiol. 158:1342–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Velculescu, V.E., Zhang, L., Vogelstein, B., Kinzler, K.W. 1995. Serial analysis of gene expression. Science 270:484–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walker, J.C. 1994. Structure and function of the receptor-like protein kinases of higher plants. Plant Mol. Biol. 26:1599–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Z., Gerstein, M., Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wise, R.P., Moscou, M.J., Bogdanove, A.J., Whitham, S.A. 2007. Transcript profiling in host–pathogen interactions. Annu. Rev. Phytopathol. 45:329–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, K., Rong, W., Qi, L., Li, J., Wei, X., Zhang, Z. 2013. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Sci. Rep. 3:3021.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang, Y., Shah, J., Klessig, D.F. 1997. Signal perception and transduction in plant defense responses. Gene Dev. 11:1621–1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yen, T.T.O., Prasanna, B.M., Setty, T.A.S., Rathore, R.S. 2004. Genetic variability for resistance to sorghum downy mildew (Peronosclerospora sorghi) and Rajasthan downy mildew (P. heteropogoni) in the tropical/ sub-tropical Asian maize germplasm. Euphytica 138:23–31.

    Article  CAS  Google Scholar 

  52. Yoshimura, S., Yamanochi, U., Katayose, Y., Toki, S., Wang, Z., Kono, I., Kurata, N., Yano, M., Iwata, N., Sasaki, T. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl Acad. Sci.95:1663–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Y. Sireesha or R. Velazhahan.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sireesha, Y., Velazhahan, R. Analysis of Defense Genes Expression in Maize upon Infection with Peronosclerospora sorghi. CEREAL RESEARCH COMMUNICATIONS 45, 272–283 (2017). https://doi.org/10.1556/0806.45.2017.010

Download citation

Keywords

  • Zea mays
  • Peronosclerospora sorghi
  • downy mildew
  • transcriptomics
  • differential display RT-PCR