Enhanced Light Intensity Increases Flavonol and Anthocyanin Concentrations but Reduces Flavone Levels in the Cotyledons of Common Buckwheat Seedlings

Abstract

The effects of two light intensities on the concentration of several flavonoids were investigated in the cotyledons of common buckwheat seedlings. The study was performed on four days old seedlings of cvs. Hruszowska, Panda, Kora and Red Corolla. One group of seedlings was grown under exposure to 180 ± 20 μmol · m−2 · s−1 photosynthetically active radiation, whereas the other group was exposed to 360 ± 20 μmol · m−2 · s−1. The experiment lasted 5 days. The results revealed that light intensity induces changes in the levels of flavonols and flavones. Increased light intensity contributed to a decrease in the concentrations of all flavone C-glucosides: orientin (luteolin-8-C-glucoside) and iso-orientin (luteolin-6-C-glucoside), and apigenin: vitexin (apigenin-8-C-glucoside) and iso-vitexin (apigenin-6-C-glucoside). Simultaneously, a substantial increase in the content of flavonols, i.e. quercetin O-glycosides, was found. To the best of our knowledge, this is the first evidence to demonstrate the contrary responses of plant flavonols and flavones to light intensity. The content of anthocyanin also increased under exposure to higher light intensity. Our results indicate that quercetin O-glycosides can play a similar role to anthocyanins in the cotyledons of common buckwheat seedlings. Results of correlation analysis indicate that the increase in flavonol and anthocyanin concentrations in response to higher light intensity is maintained through reduced accumulation of flavones and proanthocyanidins.

References

  1. Agati, G., Tattini, M. 2010. Multiple functional roles of flavonoids in photoprotection. New Phytol. 186:786–793.

    CAS  Article  Google Scholar 

  2. Bakhshi, D., Arakawa, O. 2006. Induction of phenolic compounds biosynthesis with light irradiation in the flesh of red and yellow apples. J. Appl. Hort. 8:101–104.

    Google Scholar 

  3. Bergquist, S., Gertsson, U., Nordmark, L.Y., Olsson, M.E. 2007. Effects of shade nettings, sowing time and storage on baby spinach flavonoids. J. Sci. Food Agric. 87:2464–2471.

    CAS  Article  Google Scholar 

  4. Burchard, P., Bilger, W., Weissenböck, G. 2000. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as measured by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Env. 23:1373–1380.

    CAS  Article  Google Scholar 

  5. Del Rio, D., Rodriguez-Mateos, A., Spencer, J.P.E., Tognolini, M., Borges, G., Crozier, A. 2013. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Sign. 18:1818–1892.

    Article  Google Scholar 

  6. Fallovo, C., Schreiner, M., Schwarz, D., Colla, G., Krumbein, A. 2011. Phytochemical changes induced by different nitrogen supply forms and radiation levels in two leafy Brassicaspecies. J. Agric. Food Chem. 59:4198–4207.

    CAS  Article  Google Scholar 

  7. Ghasemzadeh, A., Jaafar, H.Z.E., Rahmat, A. 2010. Synthesis of phenolics and flavonoids in ginger (Zingiber officinaleRoscoe) and their effects on photosynthesis rate. Int. J. Mol. Sci. 11:4539–4555.

    CAS  Article  Google Scholar 

  8. Gould, K.S. 2004. Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 5:314–320.

    Article  Google Scholar 

  9. Gupta, N., Sharma, S.K., Rana, J.C., Chauhan, R.S. 2011. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrumspecies. J. Plant Physiol. 168:2117–2123.

    CAS  Article  Google Scholar 

  10. Hemm, M.R., Rider, S.D., Ogas, J., Murry, D.J., Chapple, C. 2004. Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J. 38:765–778.

    CAS  Article  Google Scholar 

  11. Horbowicz, M., Wiczkowski, W., Koczkodaj, D., Saniewski, M. 2011. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentumMoench). Acta Biol. Hung. 62:265–278.

    CAS  Article  Google Scholar 

  12. Horbowicz, M., Wiczkowski, W., Szawara-Nowak, D., Sawicki, T., Kosson, R., Sytykiewicz, H. 2015. The level of flavonoids and amines in de-etiolated and methyl jasmonate treated seedlings of common buckwheat. Phytochem. Lett. 13:15–19.

    CAS  Article  Google Scholar 

  13. Jaakola, L., Hohtola, A. 2010. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Env. 33:1239–1247.

    CAS  Google Scholar 

  14. Kalinová, J., Dadáková, E. 2006. Varietal and year variation of rutin content in common buckwheat (Fagopyrum esculentumMoench). Cereal Res. Commun. 34:1315–1321.

    Article  Google Scholar 

  15. Kalinová, J., Dadáková, E. 2012. Influence of sowing date and stand density on rutin level in buckwheat. Cereal Res. Commun. 41:348–358.

    Article  Google Scholar 

  16. Kim, S.J., Kawaharada, C., Suzuki, T., Saito, K., Hashimoto, N., Takigawa, S., Yamauchi, H. 2006. Effect of natural light periods on rutin, free amino acid and vitamin C contents in the sprouts of common (Fagopyrum esculentumMoench) and tartary (F. tataricumGaertn.) buckwheats. Food Sci. Technol. Res. 12:199–205.

    CAS  Article  Google Scholar 

  17. Liu, C.Z., Guo, C., Wang, Y.C., Ouyang, F. 2002. Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua. Process. Biochem. 38:581–585.

    CAS  Article  Google Scholar 

  18. Løvdal, T., Olsen, K.M., Slimestad, R., Verheul, M., Lillo, C. 2010. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochem. 71:605–613.

    Article  Google Scholar 

  19. Ma, Z., Li, S., Zhang, M., Jiang, S., Xiao, Y. 2010. Light intensity affects growth, photosynthetic capability, and total flavonoid accumulation of Anoectochilusplants. Hort. Sci. 45:863–867.

    Article  Google Scholar 

  20. Martens, S., Mithöfer, A. 2005. Flavones and flavone synthases. Phytochem. 66:2399–2407.

    CAS  Article  Google Scholar 

  21. Neugart, S., Fiol, M., Schreiner, M., Rohn, S., Zrenner, R., Kroh, L.W., Krumbein, A. 2013. Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleraceavar. sabellica) dependent on two low temperatures. Plant Physiol. Biochem. 72:161–168.

    CAS  Article  Google Scholar 

  22. Ohnishi, O. 1990. Analyses of genetic variants in common buckwheat, Fagopyrum esculentumMoench: a review. Fagopyrum 10:12–22.

    Google Scholar 

  23. Suzuki, T., Morishita, T., Kim, S.J., Park, S.U., Woo, S.H., Noa, T., Takigawa, S. 2015. Physiological roles of rutin in the buckwheat plant. Jpn. Agr. Res. Quart. 49:37–43.

    Article  Google Scholar 

  24. Wiczkowski, W., Szawara-Nowak, D., Dębski, H., Mitrus, J., Horbowicz, M. 2014. Comparison of flavonoids profile in sprouts of common buckwheat cultivars and wild tartary buckwheat. Int. J. Food. Sci. Tech. 49:1977–1984.

    CAS  Article  Google Scholar 

  25. Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126:485–493.

    CAS  PubMed  Google Scholar 

  26. Xu, Y., Wang, G., Cao, F., Zhu, C., Wang, G., El-Kassaby, Y.A. 2014. Light intensity affects the growth and flavonol biosynthesis of ginkgo (Ginkgo bilobaL.). New Forest 45:765–776.

    Article  Google Scholar 

  27. Zoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H., Jaakola, L. 2014. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 5:534.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Horbowicz.

Additional information

Communicated by H. Grausgruber

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dębski, H., Wiczkowski, W., Szawara-Nowak, D. et al. Enhanced Light Intensity Increases Flavonol and Anthocyanin Concentrations but Reduces Flavone Levels in the Cotyledons of Common Buckwheat Seedlings. CEREAL RESEARCH COMMUNICATIONS 45, 225–233 (2017). https://doi.org/10.1556/0806.45.2017.006

Download citation

Keywords

  • common buckwheat
  • seedling
  • light intensity
  • flavonoids