Advertisement

Cereal Research Communications

, Volume 44, Issue 4, pp 669–680 | Cite as

Genetic Analyses of Kernel Carotenoids in Novel Maize Genotypes Possessing Rare Allele of β-carotene hydroxylase Gene

  • V. Muthusamy
  • F. Hossain
  • N. Thirunavukkarasu
  • S. Saha
  • P. K. Agrawal
  • H. S. GuptaEmail author
Article

Abstract

Carotenoids are important micronutrients required by humans for growth and development. Yellow maize among cereals possesses sufficient carotenoids, and thus, it is important to genetically dissect such traits for proper utilization in breeding programme. Twenty-one maize hybrids generated using novel inbreds with rare allele of β-carotene hydroxylase (crtRB1) that enhances kernel β-carotene, were evaluated at two diverse maize growing locations. Lutein, zeaxanthin and β-cryptoxanthin were positively correlated, while β-carotene showed negative correlation with other carotenoids. Grain yield did not show association with carotenoids. Preponderance of additive gene action was observed for lutein, zeaxanthin, β-cryptoxanthin and β-carotene. Experimental hybrids were much superior for kernel β-carotene compared to commercial hybrids. Based on SCA effects, high yielding experimental hybrids were identified for provitamin A and non-provitamin A carotenoids. These novel hybrid combinations of maize possessing rare allele of crtRB1 hold promise in maize biofortification programme to alleviate vitamin A deficiency and degenerative diseases in humans.

Keywords

biofortification crtRB1 carotenoids combining ability Zea mays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babu, R., Rojas, N.P., Gao, S., Yan, J., Pixley, K. 2013. Validation of the effects of molecular marker polymorphisms in lcyE and crtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor. Appl. Genet. 126:389–399.CrossRefGoogle Scholar
  2. Bouis, H., Hotz, C., McClafferty, B., Meenakshi, J.V., Pfeiffer, W. 2011. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32:S31–S40.CrossRefGoogle Scholar
  3. Buckner, B., Kelson, T.L., Robertson, D.S. 1990. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2:867–876.CrossRefGoogle Scholar
  4. Burri, B.J. 1997. Beta-carotene and human health: A review of current research. Nutr. Res. 17:547–580.CrossRefGoogle Scholar
  5. Choudhary, M., Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Pandey, N., Jha, S.K., Gupta, H.S. 2014. Characterization of β-carotene rich MAS-derived maize inbreds possessing rare genetic variation in β-carotene hydroxylase gene. Indian J. Genet. 74:620–623.Google Scholar
  6. Choudhary, M., Hossain, F., Muthusamy, V., Thirunavukkarasu, N., Saha, S., Pandey, N., Jha, S.K., Gupta, H.S. 2015. Microsatellite marker-based genetic diversity analyses of novel maize inbreds possessing rare allele of β-carotene hydroxylase (crtRB1) for their utilization in β-carotene enrichment. J. Plant Biochem. Biotechnol. 25:12–20.CrossRefGoogle Scholar
  7. Dauchet, L., Amouyel, P., Dallongeville, J. 2009. Fruits, vegetables and coronary heart disease. Nat. Rev. Cardiol. 6:599–608.CrossRefGoogle Scholar
  8. Egesel, C.O., Wong, J.C., Lambert, R.J., Rocheford, T.R. 2003. Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci. 43:818–823.CrossRefGoogle Scholar
  9. Fraser, B.D., Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43:228–265.CrossRefGoogle Scholar
  10. Galobart, J., Sala, R., Rincon-Carruyo, X., Manzanilla, E.G., Vila, B., Gasa, J. 2004. Egg yolk colour as affected by saponification of different natural pigmenting sources. J. Appl. Poult. Res. 13:328–334.CrossRefGoogle Scholar
  11. Gupta, H.S., Hossain, F., Muthusamy, V. 2015. Biofortification of maize: An Indian perspective. Indian J. Genet. 75:1–22.Google Scholar
  12. Hammershoj, M., Kidmose, U., Steenfeldt, S. 2010. Deposition of carotenoids in egg yolk by short-term supplement of coloured carrot (Daucus carota) varieties as forage material for egg-laying hens. J. Sci. Food Agri. 90:1163–1171.CrossRefGoogle Scholar
  13. Kljak, K., Drdic, M., Karolyi, D., Grbesa, D. 2012: Pigmentation efficiency of Croatian corn hybrids in egg production. Croatian J. Food Tech. Biotechnol. Nutr. 7:23–27.Google Scholar
  14. Kurilich, A., Juvik, J.A. 1999. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J. Agri. Food Chem. 47:1948–1955.CrossRefGoogle Scholar
  15. Liu, Y.Q., Davis, C.R., Schmaelzle, S.T., Rocheford, T., Cook, M.E., Tanumihardjo, S.A. 2012. β-Cryptoxanthin biofortified maize (Zea mays) increases β-cryptoxanthin concentration and enhances the color of chicken egg yolk. Poult Sci. 91:432–438.CrossRefGoogle Scholar
  16. Lokaewmanee, K., Yamauchi, K., Tsutomu, K., Saito, K. 2010. Effects on egg yolk color of paprika or paprika combined with marigold flower extracts. Italian J. Anim. Sci. 9:356–359.CrossRefGoogle Scholar
  17. Menkir, A., Liu, W., White, W.S., Maziya-Dixon, B., Rocheford, T. 2008. Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem. 109:521–529.CrossRefGoogle Scholar
  18. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Choudhary, M., Saha, S., Bhat, J.S., Prasanna, B.M., Gupta, H.S. 2014. Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:e113583CrossRefGoogle Scholar
  19. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S., Agrawal, P.K., Gupta, H.S. 2015a. Genetic variability and inter-relationship of kernel carotenoids among indigenous and exotic maize (Zea mays L.) inbreds. Cereal Res. Commun. 43:567–578.CrossRefGoogle Scholar
  20. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Pandey, N., Vishwakarma, A.K., Saha, S., Gupta, H.S. 2015b. Molecular characterization of exotic and indigenous maize inbreds for biofortification with kernel carotenoids. Food Biotechnol. 29:276–295.CrossRefGoogle Scholar
  21. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S., Gupta, H.S. 2015. Allelic variations for lycopene ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme. Cogent Food and Agric. 1:1033141.Google Scholar
  22. Olson, J.A. 1989. Biological actions of carotenoids. J. Nutr. 119:94–95.CrossRefGoogle Scholar
  23. Prasanna, B.M., Pixley, K.V., Warburton, M., Xie, C. 2010. Molecular marker-assisted breeding for maize improvement in Asia. Mol. Breed. 26:339–356.CrossRefGoogle Scholar
  24. Senete, C.T., Guimaraes, P.E.D., Paes, M.C.D., Souza, J.C. 2011. Diallel analysis of maize inbred lines for carotenoids and grain yield. Euphytica 182:395–404.CrossRefGoogle Scholar
  25. Suwarno, W.B., Pixley, K.V., Palacios-Rojas, N., Kaeppler, S.M., Babu, R. 2014. Formation of heterotic groups and understanding genetic effects in provitamin A biofortified maize breeding program. Crop Sci. 54:14–24.CrossRefGoogle Scholar
  26. Vignesh, M., Hossain, F., Nepolean, T., Saha, S., Agrawal, P.K., Guleria, S.K., Prasanna, B.M., Gupta, H.S. 2012. Genetic variability for kernel β-carotene and utilization of crtRB1 3’TE gene for biofortification in maize (Zea mays L.). Indian J. Genet. 72:189–194.Google Scholar
  27. Vignesh, M., Nepolean, T., Hossain, F., Singh, A.K., Gupta, H.S. 2013. Sequence variation in 3′UTR region of crtRB1 gene and its effect on β-carotene accumulation in maize kernel. J. Plant Biochem. Biotechnol. 22:401–408.CrossRefGoogle Scholar
  28. Yan, J., Kandianis, B.C., Harjes, E.C., Bai, L., Kim, H.E., Yang, X., Skinner, D.J., Fu, Z., Mitchell, S., Li, Q., Fernandez, S.M., Zaharoeva, M., Babu, R., Fu, Y., Palacios, N., Li, J., DellaPenna, D., Brutnell, T., Buckler, S.E., Warburton, L.M., Rocheford, T. 2010. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat. Genet. 42:322–329.CrossRefGoogle Scholar
  29. Zunjare, R., Hossain, F., Muthusamy, V., Jha, S.K., Kumar, P., Sekhar, J.C., Guleria, S.K., Singh, N.K., Nepolean, T., Gupta, H.S. 2015. Genetics of resistance to stored grain weevil (Sitophilus oryzae L.) in maize. Cogent Food Agric. 1:1075934.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

Authors and Affiliations

  • V. Muthusamy
    • 1
  • F. Hossain
    • 1
  • N. Thirunavukkarasu
    • 1
  • S. Saha
    • 1
  • P. K. Agrawal
    • 2
    • 3
  • H. S. Gupta
    • 1
    • 4
    Email author
  1. 1.ICAR-Indian Agricultural Research Institute (IARI)New DelhiIndia
  2. 2.ICAR-Vivekanand Parvatiya Krishi Anusandhan Sansthan (VPKAS)AlmoraIndia
  3. 3.Krishi Anusandhan Bhawan-IICARNew DelhiIndia
  4. 4.Borlaug Institute for South Asia (BISA)New DelhiIndia

Personalised recommendations