Advertisement

Cereal Research Communications

, Volume 44, Issue 4, pp 639–649 | Cite as

Characterizing Barley Seed Macro- and Micro-nutrients under Multiple Environmental Conditions

  • W. T. Xue
  • A. Gianinetti
  • R. Wang
  • Z. J. Zhan
  • J. Yan
  • Y. Jiang
  • T. Fahima
  • G. ZhaoEmail author
  • J. P. ChengEmail author
Article

Abstract

Crop seeds are the main staples in human diet, especially in undeveloped countries. In any case, the diet needs to be rich not only in macro-nutrients like carbohydrates and protein, but also in micro-nutrients. Nevertheless, both the macro- and micro-nutrients presented in seeds largely vary in consequence of field and environment conditions. In this research, 60 lines of a barley RILs population segregating for the SSR marker Hvm74, which is genetically linked to the GPC (grain protein content) locus (HvNAM-1), were studied in 4 environments (two growing years and two field managements) by carrying out a comprehensive profile of seed macro- (starch, total nitrogen and total soluble protein) and micro-nutrients (phytate, phenolics, flavonoids, Pi, Zn and Fe). Under field conditions, all the components were largely affected by the environment, but TN (total nitrogen) exhibited high genotype contribution, while micro-nutrients displayed higher genotype × environments interactions (GEI) than macro-nutrients. In order to approach the effects of carbon-nitrogen (C–N) balance on other seed components, two C/N ratios were calculated: C/TN (CNR1) and C/TSP (CNR2). CNR2 exhibited stronger negative correlations with all micro-nutrients. Hence, the significant GEI and its negative relationships with CNR2 highlighted the different characters of micro-nutrients in barley seeds.

Keywords

seed component macro-nutrient micro-nutrient genotype × environments interactions carbon/nitrogen ratio Hvm74 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2016_4404639_MOESM1_ESM.pdf (451 kb)
Characterizing Barley Seed Macro- and Micro-nutrients under Multiple Environmental Conditions

References

  1. Ainsworth, E.A., Gillespie, K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2:875–877.CrossRefGoogle Scholar
  2. Bao, J., Kong, X., Xie, J., Xu, L. 2004. Analysis of genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. J. of Agric. and Food Chem. 52:6010–6016.Google Scholar
  3. Blanco, A., Mangini, G., Giancaspro, A., Givo, S., Colasuonno, P., Simeone, P., Signorile, A., De Vita, P., Mastrangelo, A.M., Cattivelli, L., Gadaleta, A. 2012. Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol. Breeding 30:79–92.CrossRefGoogle Scholar
  4. Brankovic, G., Dragičević, V., Dodig, D., Zoric, M., Knežević, D., Žilić, S., Denčić, S., Šurlan, G. 2015. Genotype × environment interaction for antioxidants and phytic acid contents in bread and durum wheat as influenced by climate. Chilean J. of Agric. Res. 75:139–146.Google Scholar
  5. Caldwell, C.R., Britz, S.J., Mirecki, R.M. 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J. of Agric. and Food Chem. 53:1125–1129.CrossRefGoogle Scholar
  6. Distelfeld. A., Cakmak, I., Peleg, Z., Ozturk, L., Yazici, A.M., Budak, H., Saranga, Y., Fahima, T. 2007. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum 129:635–643.CrossRefGoogle Scholar
  7. Distelfeld, A., Korol, A., Dubcovsky, J., Uauy, C., Blake, T., Fahima, T. 2008. Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Mol. Breeding 22:25–38.CrossRefGoogle Scholar
  8. Ficco, D.B.M., Riefolo, C., Nicastro, G., De Simone, V., Di Gesù, A.M., Beleggia, R., Platani, C., Cattivelli, L., De Vita, P. 2009. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Res. 111:235–242.CrossRefGoogle Scholar
  9. Gomez-Becerra, H.F., Erdem, H., Yazici, A., Tutus, Y., Torun, B., Ozturk, L., Cakmak, I. 2010. Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J. Cereal Sci. 52:342–349.CrossRefGoogle Scholar
  10. He, J.S., Flynn, D.F.B., Wolfe-Bellin, K., Fang, J., Bazzaz, F.A. 2005. CO2 and nitrogen, but not population density, alter the size and C/N ratio of Phytolacca americana seeds. Functional Ecol. 19:437–444.CrossRefGoogle Scholar
  11. Hell, R., Stephan, U.W. 2003. Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551.PubMedGoogle Scholar
  12. Holopainen, U.R.M., Rajala, A., Jauhiainen, L., Wilhelmson, A., Home, S., Kauppila, R., Peltonen-Sainio, P. 2015. Influence of sulphur application on hordein composition and malting quality of barley (Hordeum vulgare L.) in northern European growing conditions. J. Cereal Sci. 62:151–158.CrossRefGoogle Scholar
  13. Hristov, N., Mladenov, N., Djuric, V., Kondic-Spika, A., Marjanovic-Jeromela, A., Simic, D. 2010. Genotype by environment interactions in wheat quality breeding programs in southeast Europe. Euphytica 174:315–324.CrossRefGoogle Scholar
  14. Jeuffroy, M.H., Casadebaig, P., Debaeke, P., Loyce, C., Meynard, J.M. 2014. Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review. Agronomy for Sustainable Development 34:121–137.CrossRefGoogle Scholar
  15. Jia, Z., Tang, M., Wu, J. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555–559.CrossRefGoogle Scholar
  16. Joshi, A.K., Crossa, J., Arun, B., Chand, R., Trethowan, R., Vargas, M., Ortiz-Monasterio, I. 2010. Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Res. 116:268–277.CrossRefGoogle Scholar
  17. Latta, M., Eskin, M. 1980. A simple and rapid colorimetric method for phytate determination. J. of Agric. and Food Chem. 28:1313–1315.CrossRefGoogle Scholar
  18. Liu, K.S., Peterson, K.L., Raboy, V. 2007. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines. J. of Agric. and Food Chem. 55:4453–4460.CrossRefGoogle Scholar
  19. Liu, Z., Cheng, F., Zhang, G. 2005. Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content. Food Chem. 89:49–52.CrossRefGoogle Scholar
  20. Mamo, B.E., Barber, B.L., Steffenson, B.J. 2014. Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J. Cereal Sci. 60:497–506.CrossRefGoogle Scholar
  21. Marwede, V., Schierholt, A., Möllers, C., Becker, H.C. 2004. Genotype × environment interactions and heritability of tocopherol contents in canola. Crop Sci. 44:728–731.CrossRefGoogle Scholar
  22. Ozturk, L., Eker, S., Torun, B., Cakmak, I. 2005. Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil 269:69–80.CrossRefGoogle Scholar
  23. Pandian, S.S., Robin, S., Vinod, K.K., Rajeswari, S., Manonmani, S., Subramanian, K.S., Saraswathi, R., Kirubhakaran, A.P.M. 2011. Influence of intrinsic soil factors on genotype-by-environment interactions governing micronutrient content of milled rice grains. Aust. J. of Crop Sci. 5:1737–1744.Google Scholar
  24. Parrott, D.L., Downs, E.P., Fischer, A.M. 2011. Control of barley (Hordeum vulgare L.) development and senescence by the interaction between a chromosome six grain protein content locus, day length, and vernalization. J. Exp. Bot. 63:1329–1339.CrossRefGoogle Scholar
  25. Pearce, S., Tabbita, F., Cantu, D., Buffalo, V., Avni, R., Vazquez-Gross, H., Zhao, R., Conley, C.J., Distelfeld, A., Dubcovksy, J. 2014. Regulation of Zn and Fe transporters by the GPC1 gene during early wheat mono-carpic senescence. BMC Plant Biol. 14:368.CrossRefGoogle Scholar
  26. Routaboul, J.M., Kerhoas, L., Debeaujon, I., Pourcel, L., Caboche, M., Einhorn, J., Lepiniec, L. 2006. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107.CrossRefGoogle Scholar
  27. Scheible, W.R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M.K., Stitt, M. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of arabidopsis in response to nitrogen. Plant Physiol. 136:2483–2499.CrossRefGoogle Scholar
  28. Souza, E.J., Martin, J.M., Guttieri, M.J., O’Brien, K.M., Habernicht, D.K., Lanning, S.P., McLean, R., Carlson, G.R., Talbert, L.E. 2004. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci. 44:425–432.CrossRefGoogle Scholar
  29. Stomph, T.J., Choi, E.Y., Stangoulis, J.C.R. 2011. Temporal dynamics in wheat grain zinc distribution: is sink limitation the key? Ann. Bot. 107:927–937.CrossRefGoogle Scholar
  30. Takahashi, M., Nozoye, T., Kitajima, N., Fukuda, N., Hokura, A., Terada, Y., Nakai, I., Ishimaru, Y., Kobayashi, T., Nakanishi, H., Nishizawa, N.K. 2009. In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu. Plant Soil 325:39–51.CrossRefGoogle Scholar
  31. Triboi, E., Triboi-Blondel, A.M. 2002. Productivity and grain or seed composition: a new approach to an old problem –invited paper. Eur. J. Agron. 16:163–186.CrossRefGoogle Scholar
  32. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301.CrossRefGoogle Scholar
  33. White, P., Veneklaas, E. 2012. Nature and nurture: the importance of seed phosphorus content. Plant Soil 357:1–8.CrossRefGoogle Scholar
  34. Zhang, G., Chen, J., Wang, J., Ding, S. 2001. Cultivar and environmental effects on (1→3,1→4)-β-D-glucan and protein content in malting barley. J. Cereal Sci. 34:295–301.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

Authors and Affiliations

  • W. T. Xue
    • 1
  • A. Gianinetti
    • 3
  • R. Wang
    • 1
  • Z. J. Zhan
    • 2
  • J. Yan
    • 4
  • Y. Jiang
    • 2
  • T. Fahima
    • 5
  • G. Zhao
    • 4
    Email author
  • J. P. Cheng
    • 2
    Email author
  1. 1.College of Life SciencesGuizhou UniversityGuiyangChina
  2. 2.College of AgricultureGuizhou UniversityGuiyangChina
  3. 3.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agrariaGenomics Research CentreFiorenzuola d’ArdaItaly
  4. 4.School of pharmacy and bioengineeringChengdu UniversityChengduChina
  5. 5.Institute of Evolution, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael

Personalised recommendations