Cereal Research Communications

, Volume 44, Issue 4, pp 605–616 | Cite as

Composition and Rheological Properties of Flour and Dough from Genetically Modified Wheat (Triticum aestivum L.) Hi-Line 111

  • M. A. Elfattah
  • R. M. Elsanhoty
  • M. F. RamadanEmail author
  • M. O. Osman


The main objective of this work was to evaluate the composition, nutritional, physical and rheological properties of wheat flour and dough from genetically modified wheat (Triticum aestivum L.) Hi-Line 111 (GMW) compared to conventional wheat (non-GMW). Analyses were conducted to measure the proximate chemical composition with references to 18 components including total solid, protein, lipids, crude fiber, ash, carbohydrate, minerals, amino acids, and fatty acids. In addition, physical and rheological properties such as water absorption, arrival time, dough development time, stability value, dough weakening value, extensibility of dough, resistance to extension, and ratio of resistance/extensibility were evaluated. The results showed that there were no significant differences between GMW and non-GMW in terms of chemical composition. Results revealed the presence of saturated and unsaturated fatty acids wherein there were no significant differences between GMW and its counterpart in the levels of fatty acids. In addition, there were no significant differences on the levels of amino acids. In addition, there were no significant differences between the GMW and non-GMW in the physical and rheological properties. From these results, it can be concluded that GMW Hi-Line 111 is confirmed to have nearly the composition and rheological properties as non-GMW.


GMO compositional analysis biochemical analysis substantial equivalence rheological properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2016_4404605_MOESM1_ESM.pdf (1.4 mb)
Composition and Rheological Properties of Flour and Dough from Genetically Modified Wheat (Triticum aestivum L.) Hi-Line 111


  1. AACC 2000. Approved Methods of the Association of American Cereal Chemists. St. Paul, MN, USA.Google Scholar
  2. Abdel-Aal, E.S.M., Hucl, P. 2002. Amino acid composition and in vitro protein digestibility of selected ancient wheat’s and their end products. J. Food Comp. Anal. 15:737–747.CrossRefGoogle Scholar
  3. Anjum, F.M., Zulfiqar, A., Asghar, A., Hussain, S. 2006. Use of iron as fortificant in whole wheat flour and in leavened flat breads in Developing countries. Electronic J. Environ. Agric. Food Chem. 5:1366–1370.Google Scholar
  4. AOAC 2005. Official Methods of Analysis of the Association of Official Analytical Chemists International (18th ed.). Maryland, USA.Google Scholar
  5. Appenzeller, L.M., Malley, L., MacKenzie, S.A., Hoban, D., Delaney, B. 2009. Subchronic feeding study with genetically modified stacked trait lepidopteran and coleopteran resistant maize grain in Sprague-Dawley rats. Food Chem. Toxicol. 47:1512–1520.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Arens, M., Schulte, E., Weber, K. 1994. Fettsäuremethylester, Umesterung mit Trimethylsulfoniumhydroxid (Schnellverfahren) [(Fatty acid methyl ester. Transesterification using trimethyl sulfonium hydroxid (a rapid method)]. Fat Sci. Technol. 96:67–68.Google Scholar
  7. Belderok, B., Mesdag, H., Donner, D.A. 2000. Bread-Making Quality of Wheat. Springer. New York, USA.CrossRefGoogle Scholar
  8. Bligh, E.G., Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Canadian J. Biochem. Physiol. 37:911.CrossRefGoogle Scholar
  9. Block, R.J., Durrum, E.L., Zweig, G. 1958. A Manual of Paper Chromatography and Paper Electrophoresis. Academic Press. New York, USA.Google Scholar
  10. Brune, P.D., Culler, A.H., Ridley, W.P., Walker, K. 2013. Safety of GM crops: Compositional analysis. J. Agric. Food Chem. 61:8243–8247.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Castigliego, L., Armani, A., Tinacci, L., Gianfaldoni, D., Guidi, A. 2015. Two alternative multiplex PCRs for the identification of the seven species of anglerfish (Lophius spp.) using an end-point or a melting curve analysis real time protocol. Food Chem. 166:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chassy, B.M. 2010. Food safety risks and consumer health. New Biotechnol. 27:534–544.CrossRefGoogle Scholar
  13. Christensen, A.H., Quail, P. 1996. Ubiquitin promoter-based vectors for high level expression of selectable and/ or screenable marker genes in monocotyledonous plants. Transgenic Res. 5:213–218.PubMedCrossRefPubMedCentralGoogle Scholar
  14. De Block, M., Botterman, J., Vandewiele, M., Dock, J., Thoen, C., Gossele, V., Rao Movva, N., Thompson, C., Van Montagu, M., Leemans, J. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6:2513–2518.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Domingo, J.L., Bordonaba, J.G. 2011. A literature review on the safety assessment of genetically modified plants. Environment Inter. 37:734–742.CrossRefGoogle Scholar
  16. Dona, A., Arvanitoyannis, I.S. 2009. Health risks of genetically modified foods. Crit. Rev. Food Sci. Nutr. 49:164–175.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Elsanhoty, R.M., Al-Turki, I.A., Ramadan, F.M. 2013. Prevalence of genetically modified rice, maize and soy in commercial food products in Kingdom of Saudi Arabia market. Appl. Biochem. Biotechnol. 171:883–899.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Elsanhoty, R.M., Abdelrahman, A.A., Bögl, K.W. 2004. Quality and safety evaluation of genetically modified potato Spunta with Cry V gene: Chemical composition, determination of some toxins, antinutrients compounds and feeding study on rat. Nahrung/Food 48:13–18.CrossRefGoogle Scholar
  19. Elsanhoty, R.M., Eldesouky, A.M., Ramadan, M.F. 2006. Safety assessment of genetically modified potato Spunta: Degradation of DNA in gastrointestinal track and carry over to rat organs. J. Food Biochem. 30:556–578.CrossRefGoogle Scholar
  20. Ertugay, M.F., Kotancılar, H.G., Wehling, R.L. 2007. Determination of protein, wet and dry gluten of wheat flours by near-infrared spectroscopy. In: 2nd Int. Congress on Food and Nutrition. Istanbul, Turkey. pp. 35–46.Google Scholar
  21. FAO, FAOSTAT 2001. Agricultural database, Food and Agriculture Organisation of the United Nations (FAO)
  22. Ferrari, C.M., Clerici, I., Maria, T.P.S., Chang, K.Y. 2014. A comparative study among methods used for wheat flour analysis and for measurements of gluten properties using the Wheat Gluten Quality Analyser (WGQA). Food Sci. Technol, Campinas. 34:235–242.CrossRefGoogle Scholar
  23. Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J., Klein, T.M. 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839.PubMedPubMedCentralGoogle Scholar
  24. Gayen, D., Sarkar, S.N., Datta, S.K., Datta, K. 2013. Comparative analysis of nutritional compositions of transgenic high iron rice with its non-transgenic counterpart. Food Chem. 138:835–840.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hambidge, K.M., Huffer, J.W., Raboy, V., Grunwald, G.K., Westcott, J.L., Sian, L., Miller, L.V., Dorsch, J.A., Krebs. N.F. 2004. Zinc absorption from low-phytate hybrids of maize and their wild-type is hybrids. Amer. J. Clinical Nutr. 79:1053–1059.CrossRefGoogle Scholar
  26. Hammond, B., Dudek, R., Lemen, J., Nemeth, M. 2004. Results of a 13-week safety assurance study with rats fed grain from glyphosate tolerant corn. Food Chem. Toxicol. 42:1003–1014.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hammond, B., Lemen, J., Dudek, R. 2006. Results of a 90-day safety assurance study with rats fed grain from corn rootworm-protected corn. Food Chem. Toxicol. 44:147–160.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Han, J.H., Yang, Y.X., Chen, S., Wang, Z., Yang, X.L., Wang, G.D., Men, J.H. 2005. Comparison of nutrient composition of parental rice and rice genetically modified with cowpea trypsin inhibitor in China. J. Food Comp. Anal. 18:297–302.CrossRefGoogle Scholar
  29. He, X.Y., Huang, X.Y., Li, K.L., Qin, W., Delaney, B., Luo, Y.B. 2008. Comparison of grain from corn root-worm resistant transgenic DAS-59122-7 maize with non transgenic maize grain in a 90-day feeding study in Sprague-Dawley rats. Food and Chemical Toxicol. 46:1994–2002.CrossRefGoogle Scholar
  30. Herman, R.A., Chassy, M.B., Parrott, W. 2009. Compositional assessment of transgenic crops: an idea whose time has passed. Trends in Biotechnology 27:555–557.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hong, B., Uknes, S.J., Ho, T-HD. 1988. Cloning and characterization of a cDNA encoding an mRNA rapidly induced by ABA in barley aleurone layers. Plant Mol. Biol. 11:495–506.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hruskova, M., Bednarova, M., Novotny, F. 2001. Wheat flour dough rheological characteristics predicted by NIR system 6500. Czech J. Food Sci. 19:213–218.CrossRefGoogle Scholar
  33. Jiang, X.L., Tian, J.C., Hao, Z., Zhang, W.D. 2008. Protein content and amino acid composition in grains of wheat-related species. Agric. Sci. China 7:272–279.CrossRefGoogle Scholar
  34. Kucek, L.H., Veenstra, D.L., Amnuaycheewa, P., Sorrells, M.E. 2015. A grounded guide to gluten: How modern genotypes and processing impact wheat sensitivity. Comprehensive Rev. Food Sci. Food Saf. 14:285–301.CrossRefGoogle Scholar
  35. Lanning, S.P., Talbert, L.E., McNeal, F.H., Alexander, W.L., McGuire, C.F., Bowman, H., Carlson, G., Jackson, G., Eckhoff, J., Kushnak, G., Stewart, V., Stallknecht, G. 1992. Registration of ‘Hi-Line’ wheat. Crop Sci. 32:283–284.CrossRefGoogle Scholar
  36. Martinez-Povida, A., Molla-Bauza, M.B., Del Campo Gomis, F.J., Martinez, L.M.C. 2009. Consumer perceived risk model for the introduction of genetically modified food in Spain. Food Policy 34:519–528.CrossRefGoogle Scholar
  37. Momma, K., Hashimoto, W., Yoon, J.H., Ozawa, S., Fukuda, Y., Kawai, S., Takaiwa, F, Utasumi, S., Murata, K. 2000. Safety assessment of rice genetically modified with soybean glycin by feeding studies in rats. Biosci. Biotechnol. Biochem. 64:1881–1886.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Oguchi, T., Onishi, M., Mano, J., Akiyama, H., Teshima, R., Futo, S., Furui, S., Kitta, K. 2010. Development of multiplex PCR method for simultaneous detection of four events of genetically modified maize: DAS-59122-7, MIR604, MON863 and MON88017. Food Hygiene Saf. Sci. 51:92–100.CrossRefGoogle Scholar
  39. Oikonomou, N.A., Bakalis, S., Rahman, M.S., Krokida, M.K. 2015. Gluten index for wheat products: Main variables in affecting the value and nonlinear regression model. Inter. J. Food Prop. 18:1–11.CrossRefGoogle Scholar
  40. Perten, H., Bondesson, K., Mjorndal, A. 1992. Gluten index variation in commercial Swedish wheat samples. Cereal Foods World 37:655–660.Google Scholar
  41. Pimentel, D. 2009. Energy inputs in food crop production in developing and developed nations. Energies 2:1–24.CrossRefGoogle Scholar
  42. Poulsen, M., Schröder, M., Wilcks, A., Kroghsbo, S., Lindecrona, R.H., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Shu, Q., Emami, K., Taylor, M., Gatehouse, A., Engel, K.H., Knudsen, I. 2007. Safety testing of GM-rice expressing PHA-E lectin using a new animal test design. Food Chem. Toxicol. 45:364–377.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Prabhasankar, P., Harridas, R.P. 2001. Effect of different milling methods on chemical composition of whole wheat flour. Euro. Food Res. Technol. 213:465–469.CrossRefGoogle Scholar
  44. Ramadan, M.F., Elsanhoty, R.M. 2012. Lipid classes, fatty acids and bioactive lipids of genetically modified potato Spunta with Cry V gene. Food Chem. 133:1169–1176.CrossRefGoogle Scholar
  45. Rayan, M.A., Abbott, C.L. 2015. Compositional analysis of genetically modified corn events (NK603, MON88017, MON810 and MON89034 and MON88017) compared to conventional corn. Food Chem. 176:99–105.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Raybould, A., Graser, G., Hill, K., Ward, K. 2012. Ecological risk assessments for transgenic crops with combined insect-resistance traits: The example of Bt11, MIR604 maize. J. Appl. Entomol. 136:27–37.CrossRefGoogle Scholar
  47. Ridley, W.P., Sidhu, R.S., Pyla, P.D., Nemeth, M.A., Breeze, M.L., Astwood, J.D. 2002. Comparison of the nutritional profile of glyphosate-tolerant corn event NK603 with that of conventional corn (Zea mays L.). J. Agric. Food Chem. 50:7235–7243.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Schröder, M., Poulsen, M., Wilcks, A., Kroghsbo, S., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Emami, K., Gatehouse, A., Shu, Q., Engel, K.H., Altosaar, I., Knudsen, I. 2007. A 90-day safety study of genetically modified rice expressing cry1ab protein (Bacillus thuringiensis toxin) in Wister rats. Food Chem. Toxicol. 45:339–349.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Shin, K., Suh, S., Lim, M., Woo, H., Lee, J.H., Kim, H., Cho, H. 2013. Event-specific detection system of stacked genetically modified maize by using the multiplex-PCR technique. Food Sci. Biotechnol. 22:1763–1772.CrossRefGoogle Scholar
  50. Sivamani, E., Bahieldin, A., Wraith, M.J., Al-Niemi, T.E., Dyer, W., David, T., Qu, R. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Sthrestha, H.K., Hwu, K., Wang, S., Liu, L., Chang, M. 2008. Simultaneous detection of eight genetically modified maize lines using a combination of event- and construct-specific multiplex-PCR technique. J. Agric. Food Chem. 56:8962–8968.CrossRefGoogle Scholar
  52. Taylor, S.L. 1997. Food from genetically modified organisms and potential for food allergy. Environ. Toxicol. Pharmacol. 4:121–126.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Turkec, A.S., Lucas, J.S., Karacanli, B., Baykut, A., Yuksel, H. 2016. Assessment of a direct hybridization microarray strategy for comprehensive monitoring of genetically modified organisms (GMOs). Food Chem. 194:399–409.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Vaiciulyte-Funk, L., Grazina, Juodeikiene, G., Bartkiene, E. 2015. The relationship between wheat baking properties, specific high molecular weight glutenin components and characteristics of varieties. Zemdirbyste-Agriculture 102:229–238.CrossRefGoogle Scholar
  55. World Health Organisation (WHO) 1991. Report of a Joint FAO/WHO Consultation, World Health Organisation. Geneva, Switzerland.Google Scholar
  56. World Health Organisation (WHO) 1995. Report of a WHO Workshop. World Health Organisation, Food Safety Unit. Geneva, Switzerland.Google Scholar
  57. Wu, X., Zhao, R., Wang, D., Bean, S.R., Seib, P.A., Tuinstra, M.R., Campbell, M., O’Brien, A. 2006. Effects of amylose, corn protein, and corn fiber contents on production of ethanol from starch-rich media. Cereal Chem. 83:569–575.CrossRefGoogle Scholar
  58. Yoke-Kqueen, C., Yee-Tyan, C., Siew-Ping, K., Son, R. 2011. Development of multiplex-PCR for Genetically Modified Organism (GMO) detection targeting EPSPS and Cry1Ab genes in soy and maize samples. Inter. Food Res. J. 18:515–522.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

Authors and Affiliations

  • M. A. Elfattah
    • 1
  • R. M. Elsanhoty
    • 2
    • 3
  • M. F. Ramadan
    • 4
    • 5
    Email author
  • M. O. Osman
    • 6
  1. 1.Food Technology Research InstituteAgriculture Research CenterGizaEgypt
  2. 2.Department of Industrial Biotechnology, Institute of Genetic Engineering and BiotechnologySadat City UniversitySadat CityEgypt
  3. 3.MAX Rubner Institute, Federal Research Institute of Nutrition and FoodDetmoldGermany
  4. 4.Department of Biochemistry, Faculty of agricultureZagazig UniversityZagazigEgypt
  5. 5.Deanship of Scientific ResearchUmm Al-Qura UniversityMakkahSaudi Arabia
  6. 6.Department of Biochemistry, Faculty of AgricultureCairo UniversityCairoEgypt

Personalised recommendations