Advertisement

Cereal Research Communications

, Volume 44, Issue 2, pp 349–360 | Cite as

Analysis of Stability and G × E Interaction of Rice Genotypes across Saline and Alkaline Environments in India

  • S. L. KrishnamurthyEmail author
  • S. K. Sharma
  • D. K. Sharma
  • P. C. Sharma
  • Y. R. Singh
  • V. K. Mishra
  • D. Burman
  • B. Maji
  • B. K. Bandyopadhyay
  • S. Mandal
  • S. K. Sarangi
  • R. K. Gautam
  • P. K. Singh
  • K. K. Manohara
  • B. C. Marandi
  • D. P. Singh
  • G. Padmavathi
  • P. B. Vanve
  • K. D. Patil
  • S. Thirumeni
  • O. P. Verma
  • A. H. Khan
  • S. Tiwari
  • M. Shakila
  • A. M. Ismail
  • G. B. Gregorio
  • R. K. Singh
Agronomy

Abstract

Genotype × environment (G×E) interaction effects are of special interest for identifying the most suitable genotypes with respect to target environments, representative locations and other specific stresses. Twenty-two advanced breeding lines contributed by the national partners of the Salinity Tolerance Breeding Network (STBN) along with four checks were evaluated across 12 different salt affected sites comprising five coastal saline and seven alkaline environments in India. The study was conducted to assess the G × E interaction and stability of advanced breeding lines for yield and yield components using additive main effects and multiplicative interaction (AMMI) model. In the AMMI1 biplot, there were two mega-environments (ME) includes ME-A as CARI, KARAIKAL, TRICHY and NDUAT with winning genotype CSR 2K 262; and ME-B as KARSO, LUCKN, KARSA, GOA, CRRI, DRR, BIHAR and PANVE with winning genotypes CSR 36. Genotypes CSR 2K 262, CSR 27, NDRK 11-4, NDRK 11-3, NDRK 11-2, CSR 2K 255 and PNL 1-1-1-6-7-1 were identified as specifically adapted to favorable locations. The stability and adaptability of AMMI indicated that the best yielding genotypes were CSR 2K 262 for both coastal saline and alkaline environments and CSR 36 for alkaline environment. CARI and PANVEL were found as the most discernible environments for genotypic performance because of the greatest GE interaction. The genotype CSR 36 is specifically adapted to coastal saline environments GOA, KARSO, DRR, CRRI and BIHAR and while genotype CSR 2K 262 adapted to alkaline environments LUCKN, NDUAT, TRICH and KARAI. Use of most adapted lines could be used directly as varieties. Using them as donors for wide or specific adaptability with selection in the target environment offers the best opportunity for widening the genetic base of coastal salinity and alkalinity stress tolerance and development of adapted genotypes. Highly stable genotypes can improve the rice productivity in salt-affected areas and ensure livelihood of the resource poor farming communities.

Keywords

AMMI G×E interaction rice salinity alkalinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors sincerely thank the Bill and Melinda Gates Foundation for funding support under the STRASA project (IRRI-ICAR collaborative project) the Directors of all the partner Institutes for encouragement and CRIL, IRRI for helping in data analysis.

Supplementary material

42976_2016_4402349_MOESM1_ESM.pdf (204 kb)
Analysis of Stability and G × E Interaction of Rice Genotypes across Saline and Alkaline Environments in India

References

  1. Ali, S., Gautam, R.K., Mahajan, R., Krishnamurthy, S.L., Sharma, S.K., Singh, R.K., Ismail, A.M. 2013. Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses. Field Crop Res. 154:65–73.CrossRefGoogle Scholar
  2. Allard, R.W., Bradshaw, A.D. 1964. Implication of genotype–environmental interaction in applied plant breeding. Crop Sci. 5:503–506.CrossRefGoogle Scholar
  3. Anandan, A., Eswaran, R., Sabesan, T., Prakash, M. 2009. Additive main effects and multiplicative interactions analysis of yield performances in rice genotypes under coastal saline environments. Adv. Biol. Res. 3:43–47.Google Scholar
  4. Bajpai, P.K., Prabhakaran, V.T. 2000. A new procedure of simultaneous selection for high yielding and stable crop genotypes. Indian J. Genet. 60:141–146Google Scholar
  5. Balestre, M., Santos, V.B., Soares, A.A., Reis, M. 2010. Stability and adaptability of upland rice genotypes. Crop Breed. Appl. Biotech. 10:357–363.CrossRefGoogle Scholar
  6. Eskridge, K.M. 1990. Selection of stable cultivars using a safety-first rule. Crop Sci. 30:369–374.Google Scholar
  7. FAO 2013. Global cereals forecast to increase by 7 percent in 2013. http://www.fao.org/asiapacifc/rap/home/news/detail/en/?news_uid=180032
  8. Finlay, K.W., Wilkinson, G.N. 1963. The analysis of adaptation in a plant-breeding programme. Australian J. Agril. Res. 14:742–754.CrossRefGoogle Scholar
  9. Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometric. 44:705–715.CrossRefGoogle Scholar
  10. Gauch, H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46:1488–1500.CrossRefGoogle Scholar
  11. Gauch, H.G., Zobel, R.W. 1996. AMMI analysis of yield trials. In: Kang, M.S., Gauch, H.G. (eds), Genotype-by-environment Interaction. CRC Press. Boca Raton, FL, USA. pp. 85–122.Google Scholar
  12. Gauch, H.G., Piepho, H.P., Annicchiarico, P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48:866–889.CrossRefGoogle Scholar
  13. Gregorio, G.B., Senadhira, D., Mendoza, R.D., Manigbas, N.L., Roxas, J.P., Guerta, C.Q. 2002. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res. 76:91–101.CrossRefGoogle Scholar
  14. Jagadish, S.V.K., Septiningsih, E.M., Kohli, A., Thomson, M.J., Ye, C., Redoña, E., Kumar, A., Gregorio, G.B., Wassmann, R., Ismail, A.M., Singh, R.K. 2012. Genetic advances in adapting rice to a rapidly changing climate. J. Agron. Crop Sci. 198:360–373.CrossRefGoogle Scholar
  15. Krishnamurthy, S.L., Sharma, S.K., Gautam, R.K., Kumar, V. 2014. Path and association analysis and stress indices for salinity tolerance traits in promising rice (Oryza sativa L.) genotypes. Cereal Res. Commun. 42:474–483.CrossRefGoogle Scholar
  16. Kumar, D.B.M., Shadakshari, Y.G., Krishnamurthy, S.L. 2010. Genotype×Environment interaction and stability analysis for grain yield and its components in Halugidda local rice mutants. Electronic J. Pl. Breed. 1:1286–1289.Google Scholar
  17. Kumar, D.B.M., Gangaprsad, S., Krishnamurthy, S.L., Mallikarjunaiah, H. 2011. Stability analysis of puttabatta rice mutants. Karnataka J. Agril. Sci. 24:527–528.Google Scholar
  18. Maas, E.V., Hoffman, G.J. 1977. Crop salt tolerance: Current assessment. J. Irrig. Drain. Eng. 103:115–134.Google Scholar
  19. Mishra, B. 2005. More Crop per Drop. Survey of Indian Agriculture. The Hindu, Kasthuri Publishers. Chennai, India, pp. 41–46.Google Scholar
  20. Muthuramu, S., Jebara, J.S., Gnanasekaran, M. 2011. AMMI biplot analysis for drought tolerance in rice (Oryza sativa L.). Res. J. Agril. Sci. 2:98–100.Google Scholar
  21. OECD/FAO 2012. OECD-FAO Agricultural Outlook 2012–2021. OECD Publishing and FAO. http://dx.doi. org/10.1787/agr_outlook-2012-en.Google Scholar
  22. Piepho, H., Mohring, P.J., Melchinger, A.E., Buchse, A. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 16:209–228.CrossRefGoogle Scholar
  23. Tack, J., Singh, R.K., Nalley, L.L., Viraktamath, B.C., Krishnamurthy, S.L., Lyman, N., Jagadish, K.S.V. 2015. High vapour pressure deficit drives salt-stress induced rice yield losses in India. Global Change Bio. 21:1668–1678.CrossRefGoogle Scholar
  24. Thomason, W.E., Phillips, S.B. 2006. Methods to evaluate wheat cultivar testing environments and improve cultivar selection protocols. Field Crops Res. 99:87–95.CrossRefGoogle Scholar
  25. Yan, W., Hunt, L.A., Sheng, Q., Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40:597–605.CrossRefGoogle Scholar
  26. Zeng, L., Shannon, M.C., Lesch, S.M. 2001. Timing of salinity stress affects rice growth and yield components. Agri. Water Manage. 48:191–206.CrossRefGoogle Scholar
  27. Zobel, R.W., Wright, M.J., Gauch, H.G. 1988. Statistical analysis of a yield trial. Agron. J. 80:388–393.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • S. L. Krishnamurthy
    • 1
    Email author
  • S. K. Sharma
    • 1
  • D. K. Sharma
    • 1
  • P. C. Sharma
    • 1
  • Y. R. Singh
    • 2
  • V. K. Mishra
    • 2
  • D. Burman
    • 3
  • B. Maji
    • 3
  • B. K. Bandyopadhyay
    • 3
  • S. Mandal
    • 3
  • S. K. Sarangi
    • 3
  • R. K. Gautam
    • 4
  • P. K. Singh
    • 4
  • K. K. Manohara
    • 5
  • B. C. Marandi
    • 6
  • D. P. Singh
    • 6
  • G. Padmavathi
    • 7
  • P. B. Vanve
    • 8
  • K. D. Patil
    • 8
  • S. Thirumeni
    • 9
  • O. P. Verma
    • 10
  • A. H. Khan
    • 10
  • S. Tiwari
    • 11
  • M. Shakila
    • 12
  • A. M. Ismail
    • 13
  • G. B. Gregorio
    • 13
  • R. K. Singh
    • 13
  1. 1.Central Soil Salinity Research InstituteKarnalIndia
  2. 2.Central Soil Salinity Research Institute, Regional Research StationLucknowIndia
  3. 3.Central Soil Salinity Research Institute, Regional Research StationCanning TownIndia
  4. 4.Central Agricultural Research InstitutePort Blair, Andaman and Nicobar IslandsIndia
  5. 5.Indian Council Agricultural Research Complex for GoaGoaIndia
  6. 6.Central Rice Research InstituteCuttack, OdhisaIndia
  7. 7.Directorate of Rice Research, Andra Pradesh experiment conducted at MachalipatnamIndia
  8. 8.Dr. Balasaheb Sawant Konkan Krishi VidyapeethKhar Land, PanvelIndia
  9. 9.Pandit Jawaharlal Nehru College of Agriculture and Research InstituteKaraikalIndia
  10. 10.Narendra Deva University of Agriculture & TechnologyFaizabadIndia
  11. 11.Rajendra Agricultural UniversitySamastipurIndia
  12. 12.Anbil Dharmalingam Agricultura Collage and Research InstituteTrichyIndia
  13. 13.Division of Plant Breeding Genetics and Biotechnology, IRRIPhilippines

Personalised recommendations