Advertisement

Cereal Research Communications

, Volume 44, Issue 2, pp 198–205 | Cite as

Characterization of a New Wheat-Aegilops biuncialis 1Mb(1B) Substitution Line with Good Quality-associated HMW Glutenin Subunit

  • J. P. Zhou
  • Y. Cheng
  • L. L. Zang
  • E. N. Yang
  • C. Liu
  • X. L. Zheng
  • K. J. Deng
  • Y. Q. Zhu
  • Y. ZhangEmail author
Genetics

Abstract

In this study, a new substitution line, 12-5-1, with 42 chromosomes that was derived from BC3F2 descendants of the hybridization between Triticum aestivum cv. CN19 and Aegilops biuncialis was created and reported. The 12-5-1 was immune to both powdery mildew and stripe rust and has stable fertility. Multi-color fluorescence in situ hybridization indicated that 12-5-1 was a substitution line 1Mb(1B). The seed storage protein electrophoresis showed that 12-5-1 presented high molecular weight glutenin subunits (2+12) of CN19 and a new subunit designated as M which apparently originated from parent Ae. biuncialis, and absent 7+8 subunits. Additionally, the flour quality parameters showed that the protein content, Zeleny sedimentation value, wet gluten content, and grain hardness and mixing time of 12-5-1 were signifiantly higher than those of its parent CN19. Moreover, 5 pairs of the chromosome 1Mb-specifi polymerase chain reaction-based landmark unique gene markers, TNAC1021, TNAC1026, TNAC1041, TNAC1-02 and TNAC1-04, were also obtained. The new substitution line 1Mb(1B) 12-5-1 could be a valuable source for wheat improvement, especially for wheat end product quality and resistance to disease.

Keywords

wheat Aegilops biuncialis bread-making quality HMW-GS multi-colour FISH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the Applied Fundamental Research Fund of Sichuan Province (No. 2014JY0006), the National Natural Science Foundation of China (No. 31271420, No. 31330017, No. 31371682 and No. 31201203), and the National Transgenic Major Project (No. 2014ZX0801003B-002). We are grateful to Prof. Dr. Zongxiang Tang and Prof. Dr. Shulan Fu (State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Sichuan, China) for help and guidance of FISH analysis.

References

  1. Colmer, T.D., Flowers, T.J., Munns, R. 2006. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57:1059–1078.CrossRefGoogle Scholar
  2. Damania, A.B., Pecetti, L. 1990. Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. J. Genet. Breed. 44:97–102.Google Scholar
  3. Dulai, S., Molnár, I., Szopkó, D., Darkó, É., Vojtkó, A., Sass-Gyarmati, A., Molnár-Láng, M. 2014. Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J. Plant Physiol. 171:509–517.CrossRefGoogle Scholar
  4. Farkas, A., Molnár, I., Dulai, S., Rapi, S., Oldal, V., Cseh, A., Kruppa, K., Molnár-Láng, M. 2014. Increased micronutrient content (Zn, Mn) in the 3M(b)(4B) wheat – Aegilops biuncialis substitution and 3M(b).4BS translocation identified by GISH and FISH. Genome 57:61–67.CrossRefGoogle Scholar
  5. Garg, M., Tanaka, H., Ishikawa, N., Takata, K., Yanaka, M., Tsujimoto, H. 2009a. A novel pair of HMW glutenin subunits from Aegilops searsii improves quality of hexaploid wheat. Cereal Chem. 86:26–32.CrossRefGoogle Scholar
  6. Garg, M., Tanaka, H., Ishikawa, N., Takaka, K., Yanaka, H., Tsujimoto, H. 2009b. Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. J. Cereal Sci. 50:358–363.CrossRefGoogle Scholar
  7. Gong, W.P., Li, G.R., Zhou, J.P., Li, G.Y., Liu, C., Huang, C.Y., Zhao, Z., Yang, Z. 2014. Cytogenetic and molecular markers for detecting Aegilops uniaristata chromosomes in a wheat background. Genome 57:1–9.CrossRefGoogle Scholar
  8. Han, F.P., Lamb, J.C., Birchler, J.A. 2006. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl Acad. Sci. USA 103:3238–3243.CrossRefGoogle Scholar
  9. Ishikawa, G., Nakamura, T., Ashida, T., Saito, M., Nasuda, S., Endo, T.R., Wu, J., Matsumoto, T. 2009. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor. Appl. Genet. 118:499–514.CrossRefGoogle Scholar
  10. Makkouk, K.M., Comeau, A., Ghulam, W. 1994. Resistance to barley yellow dwarf luteovirus in Aegilops species. Can. J. Plant Sci. 74:631–634.CrossRefGoogle Scholar
  11. Molnár, I., Gáspár, L., Sárvári, É., Dulai, S., Hoffmann, B., Molnár-Láng, M., Galiba, G. 2004. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 31:1149–1159.CrossRefGoogle Scholar
  12. Molnár, I., Šimková, H., Leverington-Waite, M., Goram, R., Cseh, A., Vrána, J., Farkas, A., Doležel, J., Molnár-Láng, M., Griffiths, S. 2013. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One 8:e70844. doi:10.1371/ journal. pone.0070844.Google Scholar
  13. Rasheed, A., Xia, X.C., Yan, Y.M., Appels, R., Mahmood, T., He, Z.H. 2014. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J. Cereal Sci. 60:11–24.CrossRefGoogle Scholar
  14. Schneider, A., Linc, G., Molnar, I., Molnar-Lang, M. 2005. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome 48:1070–1082.CrossRefGoogle Scholar
  15. Schneider, A., Molnár, I., Molnár-Láng, M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19.CrossRefGoogle Scholar
  16. Schneider, A., Molnár-Láng, M. 2012. Detection of various U and M chromosomes in wheat – Aegilops biuncialis hybrids and derivatives using florescence in situ hybridization and molecular markers. Czech J. Genet. Plant Breed. 48:169–177.CrossRefGoogle Scholar
  17. Tang, Z.X., Yang, Z.J., Fu, S.L. 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 55:313–318.CrossRefGoogle Scholar
  18. Zhang, Y., Zhang, Y., He, Z.H., Ye, G.Y. 2005. Milling quality and protein properties of autumn-sown Chinese wheats evaluated through multi-location trials. Euphytica 143:209–222.CrossRefGoogle Scholar
  19. Zhou, J.P., Yang, Z.J., Feng, J., Zhang, X.Z., Ren, Z.L. 2007. Production and identification of a new Triticale with branched-spike. Cereal Res. Commun. 35:1385–1395.CrossRefGoogle Scholar
  20. Zhou, J.P., Zhang, H.Y., Yang, Z.J., Li, G.R., Hu, L.J., Lei, M.P., Liu, C., Zhang, Y., Ren, Z.L. 2012. Characterization of a new T2DS.2DL-?R translocation triticale ZH-1 with multiple resistances to diseases. Genetic Resources and Crop Evolution 59:1161–1168.CrossRefGoogle Scholar
  21. Zhou, J.P., Yao, C.H., Yang, E.N., Yin, M.Q., Liu, C., Ren, Z.L. 2014. Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genet. Mol. Res. 13:660–669.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • J. P. Zhou
    • 1
  • Y. Cheng
    • 1
  • L. L. Zang
    • 1
  • E. N. Yang
    • 2
  • C. Liu
    • 3
  • X. L. Zheng
    • 1
  • K. J. Deng
    • 1
  • Y. Q. Zhu
    • 4
  • Y. Zhang
    • 1
    Email author
  1. 1.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
  3. 3.Crop Research InstituteShandong Academy of Agricultural SciencesJi’nanChina
  4. 4.Institute of Agro-products Processing Science and TechnologySichuan Academy of Agricultural SciencesChengduChina

Personalised recommendations