Advertisement

Cereal Research Communications

, Volume 44, Issue 1, pp 153–161 | Cite as

Transcriptome Profile of Early Responsive Genes in Susceptible Barley during Rhynchosporium secalis Infection

  • A. Aldaoude
  • A. Shoaib
  • E. Al-Shehadah
  • M. Rajeh
  • M. Jawhar
  • M. I. E. ArabiEmail author
Physiology

Abstract

Scald caused by Rhynchosporium secalis, is an economically important disease found worldwide. In order to profile genes and pathways responding to R. seclais infection, leaf transcriptomes before and after fungus inoculation in susceptible barley were compared using cDNA-AFLP technique. Transcriptional changes of 144 expressed sequence tags (ESTs) were observed, of which 18 have no previously described function. Functional annotation of the transcripts revealed a wide range of pathways including cell wall fortification, cytoskeleton construction and metabolic processes at different time points. Furthermore, the results of RT-PCR analysis on candidate genes, ABC transporters and lycine-specific demethylase were consistent with the cDNA-AFLP data in their expression patterns. Taken together, our data suggest that susceptible barley reprograms metabolic and biological processes to initiate a suitable response R. secalis infection.

Keywords

barley Rhynchosporium secalis defense response RT-PCR transcriptomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the Director General of AECS and the Head of Biotechnology Department for their help throughout the period of this research.

References

  1. Al-Daoude, A., Shoaib, A., Al-Shehadah, E., Jawhar, M., Arabi, M.I.E. 2014. Transcriptome analysis of the barley-Rhynchosporium secalis. The Plant Pathol. J. 3:1–7.Google Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25:3389–3402.CrossRefGoogle Scholar
  3. Arabi, M.I.E., Al-Shehadah, E., Jawhar, M. 2010. Pathogenic groups identified among isolates of Rhynchosporium secalis. The Plant Pathol. J. 26:260–263.CrossRefGoogle Scholar
  4. Baldwin, D., Crane, V., Rice, D. 1999. A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr. Opin. Plant Biol. 2:96–103.CrossRefGoogle Scholar
  5. Bjørnstad, A., Patil, V., Tekauz, A., Marøøy, A.G., Skinnes, H., Jensen, A., Magnus, H., MacKey, J. 2002. Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines: I. Markers and differential isolates. Phytopathol. 92:710–720.Google Scholar
  6. Breyne, P., Dreesen, R., Vandepoele, K. 2002. Transcriptome analysis during cell division in plants. Proc. Natl Acad. of Sci. USA 99:14825–14830.CrossRefGoogle Scholar
  7. Brown, A.H.D., Garvin, D.F., Burdon, J.J., Abbott, D.C., Read, B.J. 1996. The effect of combining scald resistance genes on disease levels, yield and quality traits in barley. Theor. Appl. Genet. 93:361–366.CrossRefGoogle Scholar
  8. Cushman, C. 2001. Crasulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol. 127:1439–1448.CrossRefGoogle Scholar
  9. Fung, R.W., Gonzalo, M., Fekete, C., Kovacs, L.G., He, Y., Marsh, E., McIntyre, L.M., Schachtman, D.P., Qiu, W. 2008. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol. 146:236–249.CrossRefGoogle Scholar
  10. Greenberg, M.V.C., Deleris, A., Hale, C.J., Liu, A., Feng, S. 2013. Interplay between active chromatin marks and RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet. 9: e1003946. doi:10.1371/journal.pgen.1003946.CrossRefGoogle Scholar
  11. Higgins, C.F. 1995. The ABC of channel regulation. Cell 82:693–696.CrossRefGoogle Scholar
  12. Kanyuka, K., Druka, A., Caldwell, D.G., Tymon, A., McCallum, W.R., Adams, M.J. 2005. Evidence that the recessive bymovirus resistance locus Rym4 in barley corresponding to the eukaryotic translation initiation factor 4E gene. Mol. Plant Pathol. 6:449–458.CrossRefGoogle Scholar
  13. Kubo, K., Kawada, N., Fujita, M., Hatta, K., Oda, S., Nakajima, T. 2010. Effect of cleistogamy on Fusarium head blight resistance in wheat. Breed. Sci. 60:405–411.CrossRefGoogle Scholar
  14. Linsell, K.J., Keiper, F.J., Forgan, A., Oldach, K.H. 2011. New insights into the infection process of Rhynchosporium secalis in barley using GFP. Fungal Genet. Biol. 48:124–131.CrossRefGoogle Scholar
  15. Lipka, V., Panstruga, R. 2005. Dynamic cellular responses in plant–microbe interactions. Curr. Opin. Plant Biol. 8:625–631.CrossRefGoogle Scholar
  16. Liu, Z.L., Luo, C., Dong, L., VanToan, C., Wei, P.X., He, K.H. 2014. Molecular characterization and expression analysis of a GTP-binding protein (MiRab5) in Mangifera indica. Gene 540:86–91.CrossRefGoogle Scholar
  17. Looseley, M.E. 2012. Genetic basis of control Rhynchosporium secalis infection and symptom expression in barley. Euphytica 184:47–56.CrossRefGoogle Scholar
  18. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd edn. Academic. London, UK.Google Scholar
  19. Meles, K., Hulluka, M., Abang, M.M. 2004. Phenotypic diversity in Rhynchosporium secalis from Ethiopia and host response to barley scald. Plant Pathol. 3:26–34.CrossRefGoogle Scholar
  20. Polesani, M., Desario, F., Ferrarini, A., Zamboni, A., Pezzotti, M., Kortekamp, A., Polverari, A. 2008. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics 9:142–147.CrossRefGoogle Scholar
  21. Van Veen, H.W., Margolles, A., Muller, M., Higgins, C.F., Konings, W.N. 2000. The homodimeric ATP-binding cassette transporters LmrA and P-glycoprotein mediate multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. 19:2503–2514.CrossRefGoogle Scholar
  22. Vuylsteke, M., Peleman, J.D., van Eijk, M.J. 2007. AFLP-based transcript profiling (cDNA-AFLP) for genomewide expression analysis. Nat. Prot. 2:1399–1413.CrossRefGoogle Scholar
  23. Wendy, E.D., Rowland, O., Piedras, P., Kim, E.H., Jonathan, D.G.J. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12:963–977.CrossRefGoogle Scholar
  24. Xi, K., Burnett, P.A., Tewari, J.P., Chen, M.H., Turkington, T.K., Helm, J.H. 2000. Histopathological study of barley cultivars resistant and susceptible to Rhyncosporium secalis. Phytopathol. 90:94–102.CrossRefGoogle Scholar
  25. Yahyaoui, A.H. 2003. Occurrence of barley leaf blight diseases in Central West Asia and North Africa. In: Yahyaoui, A.H., Brader, L., Tekauz, A., Wallwork, H., Steffenson, B. (eds), Proc. Second Int. Workshop on Barley Leaf Blights, 7–11 April (2002) ICARDA. Aleppo, Syria. p. 463.Google Scholar
  26. Zhang, S., Klessig, D.F. 2001. MAPK cascades in plant defense signalling. Trend Plant Sci. 6:520–527.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Aldaoude
    • 1
  • A. Shoaib
    • 1
  • E. Al-Shehadah
    • 1
  • M. Rajeh
    • 1
  • M. Jawhar
    • 1
  • M. I. E. Arabi
    • 1
    Email author
  1. 1.Department of Molecular Biology and MicrobiologyAECSDamascusSyrian Arab Republic

Personalised recommendations