Cereal Research Communications

, Volume 44, Issue 1, pp 69–78 | Cite as

A Comparative Study of Root System Architecture in Seedlings of Brachypodium spp. Using Three Plant Growth Supports

  • J. M. GonzálezEmail author
  • E. Friero
  • L. Selfa
  • S. Froilán
  • N. Jouve


This work reports a rapid procedure of comparing root development among different genotypes of Brachypodium spp., using three plant growth supports: gel chamber, ‘Termita’ chamber and Whatman paper. Eight variables of the root system architecture (RSA) (number of seminal roots, number of lateral roots, total length of the roots, length of the primary root, mean diameter of the roots, mean diameter of the primary root, total surface area and total volume of the roots) were studied in seedling of four genotypes each of Brachypodium distachyon, B. stacei and B. hybridum. Correlations between pairs of growth supports in terms of the eight variables examined were highly significant. In all three supports, B. stacei showed the greatest root system development while B. distachyon showed the least; B. hybridum, an allotetraploid species derived from hybridization between B. distachyon and B. stacei, showed intermediate development. ANOVA and LSD tests showed that significant differences exist between the supports, species and genotypes with respect to all the variables analysed. A cluster analysis was conducted to determine if the RSA traits could be used to differentiate the species and genotypes of Brachypodium. This analysis allowed differentiated between the three species and twelve genotypes of Brachypodium spp., although a certain overlap between species was observed. The Whatman paper support was the easiest to use, and is recommended for the characterization of large collections of genotypes.


Brachypodium distachyon stacei hybridum RSA variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was funded by a grant from the Spanish Ministry of Education and Science (AGL2012-34052). The authors thank Adrian Burton for linguistic assistance.

Supplementary material

42976_2016_4401069_MOESM1_ESM.pdf (234 kb)
A Comparative Study of Root System Architecture in Seedlings of Brachypodium spp. Using Three Plant Growth Supports


  1. Aniol, A. 1984. Induction of aluminum tolerance in wheat seedlings by low doses of aluminum in the nutrient solution. Plant Physiol. 75:551–555.CrossRefGoogle Scholar
  2. Bengough, A.G., Gordon, D.C., Al-Menaie, H., Ellis, R.P., Allan, D., Keith, R., Thomas, W.T.B., Forster, B.P. 2004. Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant Soil 262:63–70.CrossRefGoogle Scholar
  3. Canè, M.A., Maccaferri, M., Nazemi, G., Salvi, S., Francia, R., Colalongo, Ch., Tuberosa, T. 2014. Association mapping for root architectural traits in durum wheat as related to agronomic performance. Mol. Breeding 34:1629–1645.CrossRefGoogle Scholar
  4. Catalán, P., Muller, J., Hasterok, R., Jenkins, G., Mur, L.A., Langdon, T., Betekhtin, A., Siwinska, D., Pimentel, M., López-Alvarez, D. 2012. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 109:385–405.CrossRefGoogle Scholar
  5. Chochois, V., Vogel, J.P., Watt, M. 2012. Application of Brachypodium to the genetic improvement of wheat roots. J. Exp. Bot. 63:3467–3474.CrossRefGoogle Scholar
  6. Christopher, J., Christopher, M., Jennings, R., Jones, S., Fletcher, S., Borrell, A., Manschadi, A.M., Jordan, D., Mace, E., Hammer, G. 2013. QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor. Appl. Genet. 126:1563–1574.CrossRefGoogle Scholar
  7. Cobb, J.N., DeClerck, G., Greenberg, A., Clark, R., McCouch, S.R. 2013. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 126:867–887.CrossRefGoogle Scholar
  8. Draper, J., Mur, L.A., Jenkins, G., Ghosh-Biswas, G.C., Bablak, P., Hasterok, R., Routledge, A.P.M. 2001. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127:1539–1555.PubMedGoogle Scholar
  9. Forde, B., Lorenzo, H. 2001. The nutritional control of root development. Plant Soil 232:51–68.CrossRefGoogle Scholar
  10. Gahoonia, T.S., Nielsen, N.E. 2004. Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57.CrossRefGoogle Scholar
  11. Hammami, R., Jouve, N., Cuadrado, A., Soler, C., González, J.M. 2011. Prolamin storage proteins and alloploidy in wild populations of the small grass Brachypodium distachyon (L.) P. Beauv. Plant Syst. Evol. 297:99–112.CrossRefGoogle Scholar
  12. Hammami, R., Jouve, N., Soler, C., Frieiro, E., González, J.M. 2014. Genetic diversity of SSR and ISSR markers in wild populations of Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). Plant Syst. Evol. 300:2029–2040.CrossRefGoogle Scholar
  13. Hargreaves, C.E., Gregory, P.J., Bengough, A.G. 2009. Measuring root traits in barley (Hordeum vulgare ssp. vulgare and ssp. spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant Soil 316:285–297.CrossRefGoogle Scholar
  14. IBI 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768.CrossRefGoogle Scholar
  15. Ingram, P.A., Zhu, J., Shariff, A., Davis, I.W., Benfey, P.N., Elich, T. 2012. High-throughput imaging and analysis of root system architecture in Brachypodium distachyon under differential nutrient availability. Phil. Trans. R. Soc. B. 367:1559–1569.CrossRefGoogle Scholar
  16. Lobet, G., Pagès, L., Draye, X. 2011. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 157:29–39.CrossRefGoogle Scholar
  17. Lynch, J. 1995. Root architecture and plant productivity. Plant Physiol. 109:7–13.CrossRefGoogle Scholar
  18. Mairhofer, S., Zappala, S., Tracy, S.R., Sturrock, C., Bennett, M., Mooney, S.J., Pridmore, T. 2012. RooTrak: Automated Recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiol. 158:561–569.CrossRefGoogle Scholar
  19. Manschadi, A.M., Hammer, G.L., Christopher, J.T., deVoi, P. 2008. l Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129.CrossRefGoogle Scholar
  20. Obara, M., Ishimaru, T., Abiko, T., Fujita, D., Kobayashi, N., Yanagihara, S., Fukuta, Y. 2014. Identification and characterization of quantitative trait loci for root elongation by using introgression lines with genetic background of Indica-type rice variety IR64. Plant Biotechnol. Rep. 8:267–277.CrossRefGoogle Scholar
  21. Pacheco-Villalobos, D., Hardtke, C. 2012. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value. Phil. Trans. R. Soc. B. 367:1552–1558.CrossRefGoogle Scholar
  22. Price, A.H., Tomos, A.D. 1997. Genetic dissection of root growth in rice (Oryza sativa L.). II: mapping quantitative trait loci using molecular markers. Theor. Appl. Genet. 95:143–152.CrossRefGoogle Scholar
  23. Ren, Y., He, X., Liu, D., Li, J., Zhao, X., Li, B., Tong, Y., Zhang, A., Li, Z. 2012. Major quantitative trait loci for seminal root morphology of wheat seedlings. Mol. Breeding 30:139–148.CrossRefGoogle Scholar
  24. Reynolds, M., Dreccer, F., Trethowan, R. 2007. Drought-adaptive traits derived from heat wild relatives and landraces. J. Exp. Bot. 58:177–186.CrossRefGoogle Scholar
  25. Richard, C.A., Hickey, L.T., Fletcher, S., Jennings, R., Chenu, K., Christopher, J.T. 2015. High-throughput phenotyping of seminal root traits in wheat. Plant Methods: 11:13.CrossRefGoogle Scholar
  26. Sanguineti, M.C., Li, S., Maccaferri, M., Corneti, S., Rotondo, F., Chiari, T., Tuberosa, R. 2007. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann. Appl. Biol. 151:291–305.CrossRefGoogle Scholar
  27. Steele, K.A., Price, A.H., Shashidhar, H.E., Witcombe, J.R. 2006. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor. Appl. Genet. 112:208–221.CrossRefGoogle Scholar
  28. Steele, K.A., Price, A.H., Witcombe, J.R., Shrestha, R., Singh, B.N., Gibbons, J.M., Virk, D.S. 2013. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor. Appl. Genet. 126:101–108.CrossRefGoogle Scholar
  29. Trachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P. 2011. Shovelomics: high throughput genotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87.CrossRefGoogle Scholar
  30. Tracy, S.R., Roberts, J.A., Black, C.R., McNeill, A., Davidson, R., Mooney, S.J. 2010. The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. J. Exp. Bot. 61:311–313.CrossRefGoogle Scholar
  31. Tyagi, K., Lee, H.J., Lee, C.A., Steffenson, B.J., Kim, Y.J., Yun, S.J. 2014. Variation in seedling root traits in wild barley (Hordeum vulgare L. ssp. spontaneum) germplasm. Plant Genet. Resources: Characterization and Utilization 12(Suppl.1):S79–S82.CrossRefGoogle Scholar
  32. Waines, G., Ehdaie, B. 2007. Domestication and crop physiology: Roots of green-revolution wheat. Ann. Bot. 100:991–998.CrossRefGoogle Scholar
  33. Wasson, A.P., Richards, R.A., Chatrath, R., Misra, S.C., Sai Prasad, S.V., Rebetzke, G.J., Kirkegaard, J.A., Christopher, J., Watt, M. 2012. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 63:3485–3498.CrossRefGoogle Scholar
  34. Watt, M., Schneebeli, K., Dong, P., Wilson, I.W. 2009. The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Funct. Plant Biol. 36:960–969.CrossRefGoogle Scholar
  35. White, P.J., George, T.S., Dupuy, L.X., Karley, A.J., Valentine, T.A., Wiese, L., Wishart, J. 2013. Root traits for infertile soils. Front. Plant Sci. 4:193.CrossRefGoogle Scholar
  36. Ytting, N.K., Andersen, S.B., Thorup-Kristensen, K. 2014. Using tube rhizotrons to measure variation in depth penetration rate among modern North-European winter wheat (Triticum aestivum L.) cultivars. Euphytica 199:233–245.CrossRefGoogle Scholar
  37. Zhu, J., Ingram, P.A., Benfey, P.N., Elich, T. 2011. From lab to field, new approaches to phenotyping root system architecture. Curr. Opin. Plant Biol. 14:310–317.CrossRefGoogle Scholar
  38. Zhu, J., Kaeppler, S.M., Lynch, J.P. 2005. Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor. Appl. Genet. 111:688–695.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • J. M. González
    • 1
    Email author
  • E. Friero
    • 1
  • L. Selfa
    • 1
  • S. Froilán
    • 1
  • N. Jouve
    • 1
  1. 1.Department of Biomedicine y Biotechnology, Edifice of Cell Biology and GeneticsUniversity of AlcaláAlcalá de Henares, MadridSpain

Personalised recommendations