Differently Expressed ‘Early’ Flavonoid Synthesis Genes in Wheat Seedlings Become to Be Co-regulated under Salinity Stress

Abstract

Synthesis of flavonoid compounds in plants is associated with their response to environmental stress; however, the way in which the transcription of the relevant structural genes is regulated in stressed plants is still obscure. Transcription of the ‘early’ flavonoid synthesis genes Chi-1 and F3h-1 in the wheat coleoptile was investigated by quantitative real-time PCR in seedlings exposed to 100 mM or 200 mM NaCl. Under mild stress, transcript abundance of both Chi-1 and F3h-1 was increased significantly after six days of exposure. Under severe stress, the level of transcription was the same or even lower than that seen in nonstressed seedlings. In non-stressed conditions, the transcription patterns of Chi-1 and F3h-1 were quite distinct from one another, whereas under stress they became similar. An observed alteration in structural genes regulation mode under stress conditions may optimize flavonoid biosynthesis pathway to produce protective compounds with maximum efficiency.

References

  1. Borghesi, E., González-Miret, M.L., Escudero-Gilete, M.L., Malorgio, F., Heredia, F.J., Meléndez-Martínez, A.J. 2011. Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J. Agric. Food Chem. 59:11676–11682.

    CAS  Article  Google Scholar 

  2. Christie, P.J., Alfenito, M.R., Walbot, V. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways – enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549.

    CAS  Article  Google Scholar 

  3. Das, P.K., Shin, D.H., Choi, S.-B., Park, Y.-I. 2012. Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol. Cells 34:501–507.

    CAS  Article  Google Scholar 

  4. Giovanini, M.P., Puthoff, D.P., Nemacheck, J.A., Mittapalli, O., Saltzmann, K.D., Ohm, H.W., Shukle, R.H., Williams C.E. 2006. Gene-for-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol. Plant-Microbe Interact. 19:1023–1033.

    CAS  Article  Google Scholar 

  5. Himi, E., Maekawa, M., Noda, K. 2011. Differential expression of three flavanone 3-hydroxylase (F3H) genes in grains and coleoptiles of wheat. Int. J. Plant Genomic ID:369460.

  6. Hirayama, T., Shinozaki K. 2010. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 61:1041–1052.

    CAS  Article  Google Scholar 

  7. Ithal, N., Reddy, A.R. 2004. Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Sci. 166:1505–1513.

    CAS  Article  Google Scholar 

  8. Khlestkina, E.K. 2013. The adaptive role of flavonoids: emphasis on cereals. Cereal Res. Commun. 41:185–198.

    CAS  Article  Google Scholar 

  9. Khlestkina, E.K., Dobrovolskaya, O.B., Leonova, I.N., Salina, E.A. 2013. Diversification of the duplicated F3h genes in Triticeae. J. Mol. Evol. 76:261–266.

    CAS  Article  Google Scholar 

  10. Khlestkina, E.K., Röder, M.S., Salina, E.A. 2008. Relationship between homoeologous regulatory and structural genes in allopolyploid genome – a case study in bread wheat. BMC Plant Biol. 8:88.

    Article  Google Scholar 

  11. Khlestkina, E.K., Röder, M.S., Pshenichnikova, T.A., Börner, A. 2010. Functional diversity at the Rc (red coleoptile) gene in bread wheat. Mol. Breeding 25:125–132.

    CAS  Article  Google Scholar 

  12. Lo Piero, A.R., Puglisi, I., Rapisarda, P., Petrone, G. 2005. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J. Agric. Food Chem. 53:9083–9088.

    Article  Google Scholar 

  13. Ma, D., Sun, D., Wang, C., Li, Y., Guo, T. 2014. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 80:60–66.

    CAS  Article  Google Scholar 

  14. Martin, C., Prescott, A., MacKay, S., Bartlett, J., Vrijlandt, E. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1:37–49.

    CAS  Article  Google Scholar 

  15. Offerman, J.D., Rychlik, W. 2003. Oligo primer analysis software. In: Krawetz, S.A., Womble D.D. (eds), Introduction to Bioinformatics: a Theoretical and Practical Approach. Humana Press. New Jersey, USA. pp. 345–361.

    Google Scholar 

  16. Olenichenko, N.A., Ossipov, V.I., Zagoskina, N.V. 2006. Effect of cold hardening on the phenolic complex of winter wheat leaves. Russ. J. Plant Physiol. 53:495–500.

    CAS  Article  Google Scholar 

  17. Olenichenko, N.A., Zagoskina, N.V., Astakhova, N.V., Trunova, T.I., Kuznetsov, Yu.V. 2008. Primary and secondary metabolism of winter wheat under cold hardening and treatment with antioxidants. Appl. Biochem. Microbiol. 44:535–540.

    CAS  Article  Google Scholar 

  18. Quattrocchio, F., Wing, J.F., Leppen, H.T.C., Mol, J.N.M., Koes R.E. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512.

    CAS  Article  Google Scholar 

  19. Shen, X. Y., Martens, S., Chen, M.L., Li, D.F., Dong, J.L., Wang, T. 2010. Cloning and characterization of a functional flavanone-3 beta-hydroxylase gene from Medicago truncatula. Mol. Biol. Rep. 37:3283–3289.

    CAS  Article  Google Scholar 

  20. Shoeva, O.Y., Khlestkina, E.K. 2013. F3h gene expression in various organs of wheat. Mol. Biol. 47:901–903.

    CAS  Article  Google Scholar 

  21. Shoeva, O.Y., Khlestkina, E.K., Berges, H., Salina, E.A. 2014. The homoeologous genes encoding chalcone–flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant. Gene 538:334–341.

    CAS  Article  Google Scholar 

  22. Tereshchenko, O.Y., Arbuzova, V.S., Khlestkina, E.K. 2013. Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes. J. Cereal Sci. 57:10–13.

    CAS  Article  Google Scholar 

  23. Tereshchenko, O.Y., Khlestkina, E.K., Gordeeva, E.I., Arbuzova, V.S., Salina, E.A. 2012. Relationship between anthocyanin biosynthesis and abiotic stress in wheat. In: Börner, A., Kobijlski, B. (eds), Proceedings of the 15th International EWAC Conference, 2011, Novi Sad, Serbia. pp. 72–75.

  24. Treutter, D. 2006. Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett. 4:147–157.

    CAS  Article  Google Scholar 

  25. Van Oosten, M.J., Sharkhuu, A., Batelli, G., Bressan, R.A., Maggio, A. 2013. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol. Biol. 83:405–415.

    Article  Google Scholar 

  26. Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M., Zeng, L., Wanamaker, S.I., Mandal, J., Xu, J., Cui, X.P., Close, T.J. 2005. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 139:822–835.

    CAS  Article  Google Scholar 

  27. Winkel-Shirley, B. 2001. It takes garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiol. 127:1399–1404.

    CAS  Google Scholar 

  28. Zamora, P., Pardo, A., Fierro, A., Prieto, H., Zuniga, G.E. 2013. Molecular characterization of the chalcone isomerase gene family in Deschampsia antarctica. Polar. Biol. 36:1269–1280.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Robert Koebner (www.smartenglish.co.uk) for linguistic assistance during the preparation of the manuscript. This study was partially supported by RFBR (grant No 14-04-31637), a grant from the President of the Russian Federation (MD-2615.2013.4), and the State Budget Programme (Project No VI.53.1.5.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Y. Shoeva.

Additional information

Communicated by H. Grausgruber

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shoeva, O.Y., Khlestkina, E.K. Differently Expressed ‘Early’ Flavonoid Synthesis Genes in Wheat Seedlings Become to Be Co-regulated under Salinity Stress. CEREAL RESEARCH COMMUNICATIONS 43, 537–543 (2015). https://doi.org/10.1556/0806.43.2015.025

Download citation

Keywords

  • salinity tolerance
  • Triticum aestivum L.
  • transcript abundance
  • qRT-PCR