Cereal Research Communications

, Volume 43, Issue 4, pp 544–553 | Cite as

Identification of a Novel Wheat-Thinopyrum ponticum Addition Line Revealed with Cytology, SSR, EST-SSR, EST-STS and PLUG Markers

  • X. J. Li
  • X. G. Hu
  • T. Z. Hu
  • G. Li
  • Z. G. RuEmail author
  • L. L. Zhang
  • Y. M. Lang


Thinopyrum ponticum is particularly a valuable source of genes for wheat improvement. A novel wheat-Th. ponticum addition line, 1–27, was identified using cytology, SSR, ESTSSR, EST-STS and PCR-based landmark unique gene (PLUG) markers in this study. Cytological studies showed that 1–27 contained 44 chromosomes and formed 22 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) analysis indicated that two chromosomes from Th. ponticum had been introduced into 1–27 and that these two chromosomes could form a bivalent in wheat background. Such results demonstrated that 1–27 was a disomic addition line with 42 wheat chromosomes and a pair of Th. ponticum chromosomes. One SSR marker (BARC235), one EST-STS marker (MAG3284) and 8 PLUG markers (TNAC1210, TNAC1787, TNAC1803, TNAC1805, TNAC1806, TNAC1821, TNAC1867 and TNAC1957), which were all from wheat chromosome group 7, produced the specific band in Th. ponticum and 1–27, indicating that the introduced Th. ponticum chromosomes belonging to the group 7 of wheat. Sequence analysis on specific bands from Th. ponticum and 1–27 amplified using the PLUG marker TNAC1867 further confirmed this result. The 1–27 addition line was also observed to be high resistant to powdery mildew though it is not clear if the resistance of 1–27 inherited from Th. ponticum. This study provided some useful information for effective exploitation of the source of genetic variability in wheat breeding.


alien addition line Th. ponticum wheat cytology molecular marker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by a grant from the Science and Technology of China (No. 2011BAD07B02), the Major Science and Technology Project of Henan (No. 111100110100) and the Science and Technology Project of Henan (No. 132102110031).


  1. An, D., Zheng, Q., Zhou, Y., Ma, P., Lv, Z., Li, L., Li, B., Luo, Q., Xu, H., Xu, Y. 2013. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res. 21:419–432.CrossRefGoogle Scholar
  2. Chen, G., Zheng, Q., Bao, Y., Liu, S., Wang, H., Li, X. 2012. Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J. Biosciences 37:1–7.CrossRefGoogle Scholar
  3. Chen, H.M., Li, L.Z., Wei, X.Y., Li, S.S., Lei, T.D., Hu, H.Z., Wang, H.G., Zhang, X.S. 2005. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chinese Sci. Bull. 50:2328–2336.CrossRefGoogle Scholar
  4. Chen, S., Xia, G., Quan, T., Xiang, F., Jin, Y., Chen, H. 2004. Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci. 167:773–779.CrossRefGoogle Scholar
  5. Cherif-Mouaki, S., Said, M., Alvarez, J.B., Cabrera, A. 2011. Sub-arm location of prolamin and EST-SSR loci on chromosome 1Hch from Hordeum chilense. Euphytica 178:63–69.CrossRefGoogle Scholar
  6. Cui, H., Yu, Z., Deng, J., Gao, X., Sun, Y., Xia, G. 2009. Introgression of bread wheat chromatin into tall wheatgrass via somatic hybridization. Planta 229:323–330.CrossRefGoogle Scholar
  7. Dobrovolskaya, O.B., Sourdille, P., Bernard, M., Salina, E.A. 2009. Chromosome synteny of the genome of two evolutionary wheat lines. Russ. J. Genet. 45:1368–1375.CrossRefGoogle Scholar
  8. Du, W., Wang, J., Lu, M., Sun, S., Chen, X., Zhao, J., Yang, Q., Wu, J. 2013a. Molecular cytogenetic identification of a wheat-Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Mol. Breeding 31:879–888.CrossRefGoogle Scholar
  9. Du, W., Wang, J., Pang, Y., Li, Y., Chen, X., Zhao, J., Yang, Q., Wu, J. 2013b. Isolation and characterization of a Psathyrostachys huashanica Keng 6Ns chromosome addition in common wheat. PLoS One 8:e53921.CrossRefGoogle Scholar
  10. Fedak, G., Chen, Q., Conner, R.L., Laroche, A., Comeau, A., St.-Pierre, C.A. 2001. Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica 120:373–378.CrossRefGoogle Scholar
  11. Friebe, B., Jiang, J., Raupp, W.J., Mclntosh, R.A., Gill, B.S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87.Google Scholar
  12. Han, F.P., Liu, B., Fedak, G., Liu, Z.H. 2004. Genomic constitution and variation in fve partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor. Appl. Genet. 109:1070–1076.CrossRefGoogle Scholar
  13. Heslop-Harrison, J.S. 2000. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–636.CrossRefGoogle Scholar
  14. Hu, L.J., Li, G.R., Zeng, Z.X., Chang, Z.J., Liu, C., Yang, Z.J. 2011. Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. J. Appl. Genet. 52:279–285.CrossRefGoogle Scholar
  15. Hu, L.J., Liu, C., Zeng, Z.X., Li, G.R., Song, X.J., Yang, Z.J. 2012. Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes Genom. 34:67–75.CrossRefGoogle Scholar
  16. Ishikawa, G., Yonemaru, J., Saito, M., Nakamura, T. 2007. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics 8:135.CrossRefGoogle Scholar
  17. Ishikawa, G., Nakamura, T., Ashida, T., Saito, M., Nasuda, S., Endo, T.R., Wu, J., Matsumoto, T. 2009. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor. Appl. Genet. 118:499–514.CrossRefGoogle Scholar
  18. Lei, M., Li, G., Zhang, S., Liu, C.,Yang, Z. 2011. Molecular cytogenetic characterization of a new wheat Secale africanum 2Ra(2D) substitution line for resistance to stripe rust. J. Genet. 90:283–287.CrossRefGoogle Scholar
  19. Li, J., Endo, T.R., Saito, M., Ishikawa, G., Nakamura, T., Nasuda, S. 2013. Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers. Chromosoma 122:555–564.CrossRefGoogle Scholar
  20. Li, X.J., Hu, T.Z., Li, G., Jiang, X.L., Feng, S.W., Dong, N., Zhang, Z.Y., Ru, Z.G., Huang, Y. 2012. Genetic analysis of broad-grown wheat cultivar Bainong AK58 and its sib lines. Acta Agron. Sin. 38:436–446.CrossRefGoogle Scholar
  21. Lin, Z.S., Cui, Z.F., Zeng, X.Y., Ma, Y.Z., Zhang, Z.Y., Nakamura, T., Ishikawa, G., Nakamura, K., Yoshida, H., Xin, Z.Y. 2007. Analysis of wheat-Thinopyrum intermedium derivatives with BYDV-resistance. Euphytica 158:109–118.CrossRefGoogle Scholar
  22. Luan, Y., Wang, X., Liu, W., Li, C., Zhang, J., Gao, A., Wang, Y., Yang, X., Li, L. 2010. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510.CrossRefGoogle Scholar
  23. Niu, Z., Klindworth, D.L., Yu, G., Friesen, T.L., Chao, S., Jin, Y., Cai, X., Ohm, J.B., Rasmussen, J.B., Xu, S.S. 2014. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor. Appl. Genet. 127:969–980.CrossRefGoogle Scholar
  24. Nocente, F., Gazza, L., Pasquini, M. 2007. Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155:329–336.CrossRefGoogle Scholar
  25. Schwarzacher, T., Leitch, A.R., Bennett, M.D., Heslop-Harrison, J.S. 1989. In situ localization of parental genomes in a wide hybrid. Ann. Bot. 64:315–324.CrossRefGoogle Scholar
  26. Sepsi, A., Molnár, I., Szalay, D., Molnár-Láng, M. 2008. Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor. Appl. Genet. 116:825–834.CrossRefGoogle Scholar
  27. Sharp, P.J., Kreiss, M., Shewry, P., Gale, M.D. 1988. Location of B-amylase sequences in wheat and its relatives. Theor. Appl. Genet. 75:286–290.CrossRefGoogle Scholar
  28. Tang, Z.X., Fu, S.L., Ren, Z.L., Zhang, H.Q., Yang, Z.J., Yan, B.J., Zhang, H.Y. 2008. Production of a new wheat cultivar with a different 1B.1R translocation with resistance to powdery mildew and stripe rust. Cereal Res. Commun. 36:451–460.CrossRefGoogle Scholar
  29. Uhrin, A., Szakács, É., Láng, L., Bedő, Z., Molnár-Láng, M. 2012. Molecular cytogenetic characterization and SSR marker analysis of a leaf rust resistant wheat line carrying a 6G (6B) substitution from Triticum timopheevii (Zhuk.). Euphytica 186:45–55.CrossRefGoogle Scholar
  30. Zhao, J.X., Du, W.L., Wu, J., Cheng, X.N., Gao, Y., Pang, Y.H., Chen, X.H., Liu, S.H., Yang, Q.H., Fu, J. 2013. Development and identification of a wheat-Leymus mollis multiple alien substitution line. Euphytica 190:45–52.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

Authors and Affiliations

  • X. J. Li
    • 1
  • X. G. Hu
    • 1
  • T. Z. Hu
    • 1
  • G. Li
    • 1
  • Z. G. Ru
    • 1
    Email author
  • L. L. Zhang
    • 1
  • Y. M. Lang
    • 1
  1. 1.Henan Institute of Science and TechnologyCollaborative Innovation Center of Modern Biological Breeding, Henan Province; Key Discipline Open Laboratory on Crop Molecular Breeding of Henan InstituteXinxiangChina

Personalised recommendations