Cereal Research Communications

, Volume 43, Issue 4, pp 554–566 | Cite as

Consequences of 1BL/1RS Translocation on Agronomic and Physiological Traits in Wheat

  • S. Tahmasebi
  • B. HeidariEmail author
  • H. Pakniyat
  • A. Dadkhodaie


The 1BL/1RS wheat-rye translocations had been used in wheat breeding programs worldwide. The objective of this study was to determine the effect of the 1BL/1RS translocation in SeriM82 /Babax recombinant population. 167 lines of this population were assayed under well-irrigated, terminal drought, heat and a combination of heat and drought stress conditions in two years. 5S rDNA and Iag95 markers were used to differentiate genotypes with or without the1BL/1RS translocation. Presence of 1BL/1RS translocation reduced grain yield (YLD), grain per spike (GSP) and grain per m2 (GM2). QTLs in 1 BL/1RS segments indicated increased thousand-grain weight (TGW), chlorophyll content, spikelet per spike (SPLS), spike compactness (SCOM) and awn length (AWL) but reduced YLD, GSP and GM2. The 1BL/1RS carrying lines’ response varied between assayed environments. Plants of drought trials were more affected by 1BL/1RS compared to others. Differences in the effects of 1BL/1RS and QTLs suggest that gene expression at translocation loci is restricted to specific environmental conditions. In general, the 1BL/1RS translocation could not be a suitable source of genetic diversity for enhancing grain yield under heat and drought stresses.


1BL/1RS translocation wheat stress QTL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge Dr. Lynne McIntyre from CSIRO plant industry for providing the molecular map and rye-specific markers scores of SeriM82/Babax population.

Supplementary material

42976_2015_43040554_MOESM1_ESM.pdf (362 kb)
Consequences of 1BL/1RS Translocation on Agronomic and Physiological Traits in Wheat


  1. Bagherikia, S., Karimzadeh, G., Naghavi. M.R. 2014. Distribution of 1AL.1RS and 1BL.1RS wheat-rye translocations in Triticum aestivum using specific PCR. Biochem. Syst. Ecol. 55:20–26.CrossRefGoogle Scholar
  2. Bartos, P., Valkoun, J., Kosner, J., Skovencikova, U. 1973. Rust resistance of some European wheat cultivars derived from rye. Proc. 4th Inter. Wheat Genet. Symp. Univ. of Missouri Press. Columbia, MO, USA. pp. 145–146.Google Scholar
  3. Borrás, L., Slafer, G.A., Otegui, M.E. 2004. Seed dry weight response to source-sink manipulations in wheat, maize, soybean. A quantitative reappraisal. Field Crops Res. 86:131–146.CrossRefGoogle Scholar
  4. Calderini, D.F., Savin, R., Abeledo, L.G., Reynolds, M.P., Slafer, G.A. 2001. The importance of the immediately preceding anthesis period for grain weight determination in wheat. Euphytica 119:199–204.CrossRefGoogle Scholar
  5. Carver, B.F., Rayburn, A.L. 1994. Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: Agronomic performance. Crop Sci. 34:1505–1510.CrossRefGoogle Scholar
  6. Churchill, G.A., Doerge, R.W. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963–971.PubMedPubMedCentralGoogle Scholar
  7. Clarke, J.M., McCaig, T.N., DePauw, R.M. 1993. Relationship of glaucousness and epicuticular wax quantity of wheat. Canad. J. Plant Sci. 73:961–967.CrossRefGoogle Scholar
  8. Dadkhodaie, N.A., Singh, D., Park, R.F. 2011. Characterization of resistance to leaf rust in an international bread wheat nursery. J. Plant Pathol. 93:627–641.Google Scholar
  9. Dhaliwal, A.S., MacRitchie, F. 1990. Contributions of protein fractions to dough handling properties of wheat– rye translocations cultivars. J. Cereal Sci. 12:113–122.CrossRefGoogle Scholar
  10. Doerge, R.W., Churchill, G.A. 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294.PubMedPubMedCentralGoogle Scholar
  11. Ehdaie, B., Whitkus, R.W., Waines, J.G. 2003. Root biomass, water-use efficiency, and performance of wheat– rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci. 43:710–717.CrossRefGoogle Scholar
  12. Fenn, D., Lukow, O.M., Bushuk, W., DePauw, R.M. 1994. Milling and baking quality of 1BL/1RS translocation wheats. I. Effects of genotype and environment. Cereal Chem. 71:189–195.Google Scholar
  13. Hoffmann, B. 2008. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1R. Cereal Res. Commun. 36:269–278.CrossRefGoogle Scholar
  14. Jiang, Q.T., Wei, Y.M., Andre, L., Lu, Z.X., Pu, Z.E., Peng, Y.Y., Zheng, Y.L. 2010. Characterization of omega secalin genes from rye, triticale and a wheat 1BL/1RS translocation line. J. Appl. Genet. 51:403–411.PubMedCrossRefGoogle Scholar
  15. Lopes, M.S., Reynolds, M.P., McIntyre, C.L., Mathews, K.L., Jalal Kamali, M.R., Mossad, M., Feltaous, Y., Tahir, I.S.A., Chatrath, R., Ogbonnaya, F., Baum, M. 2013. QTL for yield and associated traits in the SeriM82/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor. Appl. Genet. 126:971–984.PubMedCrossRefGoogle Scholar
  16. Mathews, K.L., Malosetti, M., Chapman, S., McIntyre, L., Reynolds, M., Shorter, R., Van Eeuwijk, F. 2008. Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor. Appl. Genet. 117:1077–1091.PubMedCrossRefGoogle Scholar
  17. McIntosh, R.A. 1983. A catalogue of gene symbols for wheat. In: Sakamoto, S. (ed.), Proc. 6th Int. Wheat Genet. Symp. Kyoto Univ. Kyoto, Japan. pp. 1197–1255.Google Scholar
  18. McIntosh, R.A., Bariana, H.S., Park, R.F., Wellings, C.R. 2001. Aspects of wheat rust research in Australia. Euphytica 119:115–120.CrossRefGoogle Scholar
  19. McIntyre, L.C., Mathews, K.L., Rattey, A., Chapman, S.C., Drenth, J., Ghaderi, M., Reynolds, M., Shorter, R. 2010. Molecular detection of genomic regions associated with grain yield evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 120:527–541.PubMedCrossRefGoogle Scholar
  20. Monneveux, P., Reynolds, M.P., Zahravia, M., Mujeeb-Kazi, A. 2003. Effect of T1BL.1RS chromosome translocation on bread wheat grain yield and physiological related traits in a warm environment. Cereal Res. Commun. 31:371–378.Google Scholar
  21. Moreno-Sevilla, B., Baenzinger, P.S., Peterson, C., Graybosch, R.A., McVey, D.V. 1995. The 1BL/1RS translocation: Agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci. 35:1051–1055.CrossRefGoogle Scholar
  22. Olivares-Villegas, J.J., Reynolds, M.P., McDonald, G.K. 2007. Drought adaptive attributes in the SeriM82/ Babax hexaploid wheat population. Funct. Plant Biol. 34:189–203.CrossRefGoogle Scholar
  23. O’Toole, J.C., Moya, T.B. 1978. Genotypic variation in maintenance of leaf water potential in rice. Crop Sci. 18:873–876.CrossRefGoogle Scholar
  24. Pask, A.J.D., Pietragalla, J., Mullan, D.M., Reynolds, M.P. 2012. Physiological breeding II: A field guide to wheat phenotyping. CIMMYT, Mexico, D.F., Mexico. 140 p. ISBN 978-970-648-182-5.Google Scholar
  25. Payne, R.W., Harding, S.A., Murray, D.A., Soutar, D.M., Bird, D.B. 2012. The 12 Guide to the GenStat Release 15, VSN International. Hemel Hempstead, UK.Google Scholar
  26. Peake, A.S. 2003. Inheritance of Grain Yield and Effect of the 1BL/1RS Translocation in Three Bi-Parental Wheat (Triticum aestivum L.) Populations in Production Environments of North Eastern Australia. School of Land and Food Sciences, The University of Queensland. Brisbane, Australia. 204 p.Google Scholar
  27. Peake, A.S., Gilmour, A., Cooper, M. 2011. The 1BL/1RS translocation decreases grain yield of spring wheat germplasm in low yield environments of north-eastern Australia. Crop Past. Sci. 62:276–288.CrossRefGoogle Scholar
  28. Pinto, R.S., Reynolds, M.P., Mathews, K.L., McIntyre, C.L., Olivares-Villegas, J.J., Chapman, S.C. 2010. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet. 121:1001–1021.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Rabinovich, S.V. 1998. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340.CrossRefGoogle Scholar
  30. Rattey, A., Shorter, R., Chapman, S.C., Dreccer, M.F., Van Herwaarden, A.F. 2009. Variation for biomass and grain components, and traits conferring improved yield and grain weight, in an elite recombinant inbred wheat population grown under variable drought conditions. Aust. J. Agric. Res. 60:717–729.Google Scholar
  31. Rajaram, S., Mann, C.E., Oniz-Ferrara, G., Mujeeb-Kazi, A. 1983. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Sakamoto, S. (ed.), Proc. of the 6th Intern. Wheat Genet. Symp. Kyoto, Japan. pp. 613–621.Google Scholar
  32. Rogowsky, P.M., Sorrela, M.E., Shepherd, K.W., Langridge, P. 1993. Characterization of wheat-rye recombinants with RFLP and PCR probes. Theor. Appl. Genet. 85:1023–1028.PubMedCrossRefGoogle Scholar
  33. Schlegel, R., Korzun, V. 1997. About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breed. 116:537–540.CrossRefGoogle Scholar
  34. Singh, N.K., Shepherd, K.W., McIntosh, R.A. 1990. Linkage mapping of genes for resistance to leaf, stem and tripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor. and Appl. Genet. 80:609–616.CrossRefGoogle Scholar
  35. Ugarte, C., Calderini, D.F., Slafer, G.A. 2007. Grain weigh, grain number responsiveness to pre-anthesis temperature in wheat, barley, triticale. Field Crops Res. 100:240–248.CrossRefGoogle Scholar
  36. Villareal, R.L., Rajaram, S., Mujeeb-Kazi, A., del Toro, E. 1991. The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breed. 106:77–81.CrossRefGoogle Scholar
  37. Villareal, R.L., Mujeeb-Kazi, A., Rajaram, S., del Toro, E. 1994. Associated effects of chromosome 1B/1R translocation on agronomic traits in hexaploid wheat. Breed Sci. 44:7–11.Google Scholar
  38. Villareal, R.L., del Toro, E., Mujeeb-Kazi, A., Rajaram, S. 1995. The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breed. 114:497–500.CrossRefGoogle Scholar
  39. Voorrips, R.E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Heredity 93:77–78.CrossRefGoogle Scholar
  40. Wang, S., Basten, C.J., Zeng, Z.B. 2007. Windows QTL Cartographer V2.5 user manual. Bioinformatic Research Center, North Carolina State University. Raleigh, NC, USA.Google Scholar
  41. Zeller, F.J. 1973. 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears, E.R., Sears, L.M.S. (eds), Proc. 4th Intern. Wheat Genet. Symp., Univ, Missouri, Columbia, USA, pp. 209–221.Google Scholar
  42. Zhao, C., Cui, F., Wang, X., Shan, S., Li, X., Bao, Y., Wang, H. 2012. Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics. Field Crops Res. 127:79–84.CrossRefGoogle Scholar
  43. Zhou, Y., He, Z.H., Liu J.J., Liu, L. 2003. Distribution of 1BL/1RS translocation in Chinese winter wheat and its effect on noodle quality. In: Pogna, N.E., Romano, M., Pogna, E., Galterio, G. (eds), Proc. 10th Intern. Wheat Genetics Symposium. Paestum, Italy. 3:1419–1421.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

Authors and Affiliations

  • S. Tahmasebi
    • 1
  • B. Heidari
    • 1
    Email author
  • H. Pakniyat
    • 1
  • A. Dadkhodaie
    • 1
  1. 1.Department of Crop Production and Plant Breeding, College of AgricultureShiraz UniversityShirazIran

Personalised recommendations