Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 4, pp 385–395 | Cite as

Inhibition of the Formation of Amyloid-Like Fibrils with Spices, Especially Cloves

  • Márta KotormánEmail author
  • Alexandra Varga
  • Phanindra Babu Kasi
  • János Nemcsók
Article

Abstract

During the study of inhibition of amyloid fibril formation, a-chymotrypsin protein was developed in 55% ethanol at pH 7.0. We investigated the inhibitory effect of different spices on amyloid fibril formation using turbidity measurements and Congo red binding assays. We found that all spices except the black pepper and caraway seed prevented fibril formation. The highest inhibition was measured with the clove, which reduced the amount of aggregates by 90%. We studied the inhibitory effect of the cloves at different concentrations on aggregation, it was found that the inhibitory activity of clove is dependent on concentration. We have measured the total phenolic content of the spice extracts too. Based on all these findings we have come to the following conclusion: Our results indicate that spices can contain other compounds too — not only phenolic compounds — which influence the formation of amyloid fibrils, and the effectiveness of various phenolic compounds are different.

Keywords

α-chymotrypsin amyloid fibrils clove polyphenols spice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adefegha, S. A., Oboh, G. (2012) In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas. Asian Pac. J. Trop. Biomed. 2, 774–781.CrossRefGoogle Scholar
  2. 2.
    Cheng, B., Gong, H., Xiao, H., Petersen, R. B., Zheng, L., Huang, K. (2013) Inhibiting toxic aggregation of amyloidogenic proteins: A. therapeutic strategy for protein misfolding diseases. Biochim. Biophys. Acta-Gen. Subj. 1830, 4860–871.CrossRefGoogle Scholar
  3. 3.
    Cheng, B., Liu, X., Gong, H., Huang, L., Chen, H., Zhang, X., Li, C., Yang, M., Ma, B., Jiao, L., Zheng, L., Huang, K. (2011) Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J. Agric. Food Chem. 59, 13147–13155.CrossRefGoogle Scholar
  4. 4.
    Chiti, F., Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.CrossRefGoogle Scholar
  5. 5.
    Daval, M., Bedrood, S., Gurlo, T., Huang, C. J., Costes, S., Butler, P. C., Langen, R. (2010) The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid 17, 118–128.CrossRefGoogle Scholar
  6. 6.
    Dec, R., Babenko, V., Dzwolak, W. (2016) Molecules of Congo red caught hopping between insulin fibrils: a chiroptical probe of the dye-amyloid binding dynamics. RSC Advances 6, 97331–97337.CrossRefGoogle Scholar
  7. 7.
    Dubey, K., Anand, B. G., Shekhawat, D. S., Kar, K. (2017) Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Sci. Rep. 7, 40744.Google Scholar
  8. 8.
    Essa, M. M., Vrjayan, R. K., Castellano-Gonzalez, G., Memon, M. A., Braidy, N., Guillemin, G. J. (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res. 37, 1829–1842.CrossRefGoogle Scholar
  9. 9.
    Hard, T., Lendel, C. (2012) Inhibition of amyloid formation, J. Mol. Biol. 421, 441–65.CrossRefGoogle Scholar
  10. 10.
    Hazavehei, S. M. (2012) Effect of two herbal polyphenol compounds on human amylin amyloid formation and destabilization. J. Med. Plants Res. 6, 3207–3212.Google Scholar
  11. 11.
    Hossain, M. B., Patras, A., Barry-Ryan, C., Martin-Diana, A. B., Brunton, N. P. (2011) Application of principal component and hierarchical cluster analysis to classify different spices based on in vitro antioxidant activity and individual polyphenolic antioxidant compounds. J. Funct. Foods 3, 179–189.CrossRefGoogle Scholar
  12. 12.
    Iriti, M., Vitalini, S., Fico, G., Faoro, F. (2010) Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 15, 3517–3555.CrossRefGoogle Scholar
  13. 13.
    Iuvone, T., De Filippis, D., Esposito, G., D’Amico, A. (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J. Pharmacol Exp. Ther. 317, 1143–1149.CrossRefGoogle Scholar
  14. 14.
    Justesen, U., Knuthsen, P. (2001) Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem. 73, 245–250.CrossRefGoogle Scholar
  15. 15.
    Kim, I. S., Yang, M. R., Lee, O. H., Kang, S. N. (2011) Antioxidant activities of hot water extracts from various spices. Int. J. Mol. Sci. 12, 4120–1131.CrossRefGoogle Scholar
  16. 16.
    Klunk, W. E., Jacob, R. F., Mason, R. P. (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay Anal. Biochem. 266, 66–76.Google Scholar
  17. 17.
    Knowles, T. P., Vendruscolo, M., Dobson, C. M. (2014) The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–96.CrossRefGoogle Scholar
  18. 18.
    Lan, X., Wang, W., Li, Q., Wang, J. (2016) The natural flavonoid pinocembrin: Molecular targets and potential therapeutic applications. Mol. Neurobiol. 53, 1794–1801.CrossRefGoogle Scholar
  19. 19.
    Liang, Z. H., Cheng, X. H., Ruan, Z. G., Wang, H., Li, S. S., Liu, J., Li, G. Y., Tian, S. M. (2015) Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC 12 cells incubated with amyloid-beta42. Neural Regen. Res. 10, 1292–1297.CrossRefGoogle Scholar
  20. 20.
    Liu, R., Wu, C., Zhou, D., Yang, F., Tian, S., Zhang, L., Zhang, T., Du, G. (2012) Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med. 10, 105.Google Scholar
  21. 21.
    Mirmosayyeb, O., Tanhaei, A., Sohrabi, H. R., Martins, R. N., Tanhaei, M., Najafi, M. A., Safaei, A., Meamar R. (2017) Possible role of common spices as a preventive and therapeutic agent for Alzheimer’s disease. Int. J. Prev. Med. 8, 5.Google Scholar
  22. 22.
    Misharina, T. A. (2016) Antiradical propertiesof essential oils and extracts from coriander, cardamom, white, red, and black peppers. Appl. Biochem. Microbiol. 52, 79–86.CrossRefGoogle Scholar
  23. 23.
    Na, J. Y., Song, K., Lee, J. W., Kim, S., Kwon, J. (2016) 6-Shogaol has anti-amyloidogenic activity and ameliorates Alzheimer’s disease via CysLTlR-mediated inhibition of cathepsin B. Biochem. Biophys. Res. Commun. 477, 96–102.CrossRefGoogle Scholar
  24. 24.
    Ngoungoure, V. L. N., Schluesener, J., Moundipa, R. F. S., Chluesener, H. (2015) Natural polyphenols binding to amyloid: A. broad class of compounds to treat different human amyloid diseases. Mol. Nutr. Food Res. 59, 8–20.CrossRefGoogle Scholar
  25. 25.
    Ono, K., Li, L., Takamura, Y., Yoshiike, Y., Zhu, L., Han, F., Mao, X., Ikeda, T., Takasaki, J., Nishijo, FL, Takashima, A., Teplow, D. B., Zagorski, M. G., Yamada, M. (2012) Phenolic compounds prevent amyloid P-protein oligomerization and synaptic dysfunction by site-specific binding. J. Biol. Chem. 287, 14631–14643.CrossRefGoogle Scholar
  26. 26.
    Pandey, N., Strider, J., Nolan, W. C., Yan, S. X., Galvin, J. E. (2008) Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol. 115, 479–189.CrossRefGoogle Scholar
  27. 27.
    Porat, Y., Abramowitz, A., Gazit, E. (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37.CrossRefGoogle Scholar
  28. 28.
    Porzoor, A., Alford, B., Hügel, FL, Grando, D., Caine, J., Macreadie, I. (2015) Anti-amyloidogenic properties of some phenolic compounds. Biomolecules 5, 505–527.CrossRefGoogle Scholar
  29. 29.
    Simon, L. M., Laczkó, I., Demcsak, A., Tóth, D., Kotorman, M., Fülöp, L. (2012) The formation of amyloid-like fibrils of α-chymotrypsin in different aqueous organic solvents. Protein Pept. Lett. 19, 544–550.CrossRefGoogle Scholar
  30. 30.
    Solanki, I., Parihar, R., Mansuri, M. L., Parihar, M. S. (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr. 6, 64–72.CrossRefGoogle Scholar
  31. 31.
    Stefani, M. (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta 1739, 5–25.CrossRefGoogle Scholar
  32. 32.
    Suantawee, T., Wesarachanon, K., Anantsuphasak, K., Daenphetploy, T., Thien-Ngern, S., Thilavech, T., Pasukamonset, P., Ngamukote, S., Adisakwattana, S. (2015) Protein glycation inhibitory activity and antioxidant capacity of clove extract. J. FoodSci. Technol. 52, 3843–3850.Google Scholar
  33. 33.
    Torres, J. E. D., Gassara, F., Kouassi, A. P., Brar, S. K., Belkacemi, K. (2017) Spice use in food: Properties and benefits. Crit. Rev. Food Sci. Nutr. 57, 1078–1088.CrossRefGoogle Scholar
  34. 34.
    Touba, E. P., Zakaria, M., Tahereh, E. (2012) Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro. Microb. Pathog. 52, 125–129.CrossRefGoogle Scholar
  35. 35.
    de Vasconcelos, D. N., Ximenes, V. F. (2015) Albumin-induced circular dichroism in Congo red: Applications for studies of amyloid-like fibril aggregates and binding sites. Spectrochim. Acta Part A. Mol. Biomol. Spectrosc. 150, 321–330.CrossRefGoogle Scholar
  36. 36.
    Wang, S. S., Liu, K. N., Lee, W. H. (2009) Effect of curcumin on the amyloid fibrillogenesis of hen egg-white lysozyme. Biophys. Chem. 144, 78–87.CrossRefGoogle Scholar
  37. 37.
    Waterhouse, A. L. (2002) Determination of Total Phenolics. In Current Protocols in Food Analyti-cal Chemistry John Wiley & Sons, Inc., Hoboken, NJ, USA. (doi:10.1002/0471142913.faa0101s06)Google Scholar
  38. 38.
    Wu, C., Scott, J., Shea, J. E. (2012) Binding of congo red to amyloid protofibrils of the Alzheimer AP(9-10) peptide probed by molecular dynamics simulations. Biophys. J. 103, 550–557.CrossRefGoogle Scholar
  39. 39.
    Zhang, C., Browne, A., Child, D., Tanzi, R. E. (2010) Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem. 285, 28472–28480.CrossRefGoogle Scholar
  40. 40.
    Zhao, R., So, M., Maat, H., Ray, N. J., Arisaka, E., Goto, Y., Carver, J. A., Hall, D. (2016) Measurement of amyloid formation by turbidity assay-seeing through the cloud. Biophys. Rev. 8, 445–171.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Márta Kotormán
    • 1
    Email author
  • Alexandra Varga
    • 1
  • Phanindra Babu Kasi
    • 1
    • 2
  • János Nemcsók
    • 3
  1. 1.Department of Biochemistry and Molecular Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
  2. 2.Doctoral School in Biology, Faculty of Science and InformatiesUniversity of SzegedSzegedHungary
  3. 3.Department of Biology, Pedagogical FacultySelye János UniversityKomarnoSlovak Republic

Personalised recommendations