Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 2, pp 125–134 | Cite as

Inhibition of the Formation of Amyloid-Like Fibrils Using Herbal Extracts

  • Márta KotormánEmail author
  • Zita Kelemen
  • Phanindra Babu Kasi
  • János Nemcsók
Article

Abstract

We tested the amyloid fibril formation inhibitory effect of seven teas diluted in 55% ethanol at pH 7.0 at a protein concentration of 0.15 mg/ml α-chymotrypsin. In the experiments we investigated the formation and inhibition of amyloid fibrils by turbidity measurements, aggregation kinetics experiments and Congo red binding assay. The results suggest that the different teas effectively inhibit the formation of amyloidlike fibrils. The two most potent inhibitors were peppermint and melilot, extracts which almost completely inhibited the formation of aggregates in 5-fold dilution. The inhibitory effect on the aggregation formation of melilot and peppermint extracts was concentration dependant. The extent of inhibition was found to be proportional with the total concentration of phenolic compounds.

Keywords

α-Chymotrypsin amyloid fbrils melilot peppermint polyphenols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by project EFOP-3.6.1-16-2016-00008.

References

  1. 1.
    Alexa, E., Danciu, C., Radulov, I., Obistioiu, D., Sumalan, R. M., Morar, A., Dehelean, C. A. (2018) Phytochemical screening and biologica activity of Mentha×piperita L. and Lavandula angustifolia Mill. extracts. Anal. Cell. Pathol. (Amst). 2018, 2678924.Google Scholar
  2. 2.
    Cascella, M., Bimonte, S., Muzio, M. R., Schiavone, V., Cuomo, A. (2017) The effcacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect. Agent. Cancer 12, 36.Google Scholar
  3. 3.
    Chaturvedi, S. K., Khan, J. M., Siddiqi, M. K., Alam, P., Khan, R. H. (2016) Comparative insight into surfactants mediated amyloidogenesis of lysozyme. Int. J. Biol. Macromol. 83, 315–325.CrossRefGoogle Scholar
  4. 4.
    Cornejo, A., Aguilar Sandoval, F., Caballero, L., Machuca, L., Muñoz, P., Caballero, J., Perry, G., Ardiles, A., Areche, C., Melo, F. (2017) Rosmarinic acid prevents fbrillization and diminishes vibra-tional modes associated to β sheet in tau protein linked to Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 32, 945–953.CrossRefGoogle Scholar
  5. 5.
    Dobson, C. M. (2006) Protein aggregation and its consequences for human disease. Protein Pept Lett. 13, 219–227.CrossRefGoogle Scholar
  6. 6.
    Dobson, C. M. (2017) The amyloid phenomenon and its links with human disease. Cold Spring Harb. Perspect. Biol. 9, pii: a023648.Google Scholar
  7. 7.
    Fecka, I., Turek, S. (2007) Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, melissa, and sage. J. Agric. Food Chem. 55, 10908–10917.CrossRefGoogle Scholar
  8. 8.
    Fernando, W. M. A. D. B., Somaratne, G., Goozee, K. G., Williams, S., Singh, H., Martins, R. N. (2017) Diabetes and Alzheimer’s disease: Can tea phytochemicals play a role in prevention? J. Alzheimers Dis. 59, 481–501.CrossRefGoogle Scholar
  9. 9.
    Fuentes, A. L., Hennessy, K., Pascual, J., Pepe, N., Wang, I., Santiago, A., Chaggan, C., Martinez, J., Rivera, E., Cota, P., Cunha, C., Nogaj, L. A., Moffet, D. A. (2016) Identifcation of plant extracts that inhibit the formation of diabetes-linked IAPP Amyloid. J. Herb. Med. 6, 37–41.CrossRefGoogle Scholar
  10. 10.
    Gazova, Z., Siposova, K., Kurin, E., Mucaji, P., Nagy, M. (2013) Amyloid aggregation of lysozyme: the synergy study of red wine polyphenols. Proteins 81, 994–1004.CrossRefGoogle Scholar
  11. 11.
    He, J., Xing, Y. F., Huang, B., Zhang, Y. Z., Zeng, C. M. (2009) Tea catechins induce the conversion of preformed lysozyme amyloid fbrils to amorphous aggregates. J. Agric. Food Chem. 57, 11391–11396.CrossRefGoogle Scholar
  12. 12.
    Hsu, S. S., Chou, C. T., Liao, W. C., Shieh, P., Kuo, D. H., Kuo, C. C., Jan, C. R., Liang, W. Z. (2016) The effect of gallic acid on cytotoxicity, Ca2+ homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem. Biol. Interact. 252, 61–73.CrossRefGoogle Scholar
  13. 13.
    Hu, H. Y. (2017) Structural aspects of protein aggregation. Protein Pept Lett. 24, 280.CrossRefGoogle Scholar
  14. 14.
    Jayamani, J., Shanmugam, G. (2014) Gallic acid one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fbril formation. Eur. J. Med. Chem. 85, 352–358.CrossRefGoogle Scholar
  15. 15.
    Kamihira-Ishijima, M., Nakazawa, H., Kira, A., Naito, A., Nakayama, T. (2012) Inhibitory mechanism of pancreatic amyloid fbril formation: formation of the complex between tea catechins and the fragment of residues 22-27. Biochemistry 51, 10167–10174.CrossRefGoogle Scholar
  16. 16.
    Khan, E., Mishra, S. K., Kumar, A. (2017) Emerging methods for structural analysis of protein aggregation. Protein Pept Lett. 24, 331–339.CrossRefGoogle Scholar
  17. 17.
    Klunk, W. E., Jacob, R. F., Mason, R. P. (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal. Biochem. 266, 66–76.CrossRefGoogle Scholar
  18. 18.
    Knowles, T. P., Vendruscolo, M., Dobson, C. M. (2014) The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396.CrossRefGoogle Scholar
  19. 19.
    Konar, M., Bag, S., Roy, P., Dasgupta, S. (2017) Gallic acid induced dose dependent inhibition of lysozyme fbrillation. Int. J. Biol. Macromol. 103, 1224–1231.CrossRefGoogle Scholar
  20. 20.
    Kong, L. X. Zeng, C. M. (2017) Effects of seeding on lysozyme amyloid fbrillation in the presence of epigallocatechin and polyethylene glycol. Biochemistry (Mosc). 82, 156–167.CrossRefGoogle Scholar
  21. 21.
    Kotormán, M., Kasi, P. B., Halász, L., Borics, A. (2017) Inhibition of amyloid-like fbril formation of trypsin by red wines. Protein Pept. Lett. 24, 466–470.CrossRefGoogle Scholar
  22. 22.
    Kulandaivelu, K., Azad, M. A. K. (2016) Nanoencapsulated tea polyphenols as anticancer agent. Research Journal of Biotechnology 11, 92–101.Google Scholar
  23. 23.
    Kumar, E. K., Hague, N., Prabhu, N. P. (2017) Kinetics of protein fbril formation: Methods and mechanisms. Int. J. Biol. Macromol. 100, 3–10.CrossRefGoogle Scholar
  24. 24.
    Ma, B., Zhang, F., Liu, Y., Xie, J., Wang, X. (2017) Resveratrol induces the conversion from amyloid to amorphous aggregation of β-lactoglobulin. Protein Pept Lett. 24, 1113–1119.CrossRefGoogle Scholar
  25. 25.
    Nilsson, M. R. (2004) Techniques to study amyloid fbril formation in vitro. Methods 34, 151–160.CrossRefGoogle Scholar
  26. 26.
    Omar, S. H. (2017) Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed. Pharmacother. 89, 396–413.CrossRefGoogle Scholar
  27. 27.
    Peter, B., Bosze, S., Horvath, R. (2017) Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials. Eur. Biophys. J. 46, 1–24.CrossRefGoogle Scholar
  28. 28.
    Radko, S. P., Khmeleva, S. A., Suprun, E. V., Kozin, S. A., Bodoev, N. V., Makarov, A. A., Archakov, A. I., Shumyantseva, V. V. (2015) Physico-chemical methods for studying amyloid-β aggregation. Biomed. Khim. 9, 258–274.Google Scholar
  29. 29.
    Riachi, L. G., De Maria, C. A. (2015) Peppermint antioxidants revisited. Food Chem. 176, 72–81.CrossRefGoogle Scholar
  30. 30.
    Riek, R. (2017) The three-dimensional structures of amyloids. Cold Spring Harb. Perspect. Biol. 9, pii: a023572.Google Scholar
  31. 31.
    Safra, J., Pospísilová, M., Honegr, J., Spilková, J. (2007) Determination of selected antioxidants in Melissae herba by isotachophoresis and capillary zone electrophoresis i the column-coupling con-fguration. J. Chromatogr. A1171, 124–132.Google Scholar
  32. 32.
    Simon, L. M., Laczkó, I., Demcsák, A., Tóth, D., Kotormán, M., Fülöp, L. (2012) The formation of amyloid-like fbrils of α-chymotrypsin in different aqueous organic solvents. Protein Pept. Lett. 19, 544–550.CrossRefGoogle Scholar
  33. 33.
    Soodi, M., Dashti, A., Hajimehdipoor, H., Akbari, S., Ataei, N. (2017) Melissa offcinalis acidic fraction protects cultured cerebellar granule neurons against beta amyloid-induced apoptosis and oxida-tive stress. Cell J. 18, 556–564.PubMedGoogle Scholar
  34. 34.
    Soto-Ortega, D. D., Murphy, B. P., Gonzalez-Velasquez, F. J., Wilson, K. A., Xie, F., Wang, Q., Moss, M. A. (2011) Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by func-tionalization of the aromatic center. Bioorg. Med. Chem. 19, 2596–2602.CrossRefGoogle Scholar
  35. 35.
    Stefani, M., Rigacci, S. (2014) Benefcial properties of natural phenols: highlight on protection against pathological conditions associated with amyloid aggregation. Biofactors 40, 482–493.CrossRefGoogle Scholar
  36. 36.
    Tamura, S., Warabi, Y., Matsubara, S. (2012) Severe liver dysfunction possibly caused by the combination of interferon beta-1b therapy and melilot (sweet clover) supplement. J. Clin. Pharm. Ther. 37, 724–725.CrossRefGoogle Scholar
  37. 37.
    Wang, J. B., Wang, Y. M., Zeng, C. M. (2011) Quercetin inhibits amyloid fbrillation of bovine insulin and destabilizes preformed fbrils. Biochem. Biophys. Res. Commun. 415, 675–679.CrossRefGoogle Scholar
  38. 38.
    Waterhouse, A. L. (2002) Determination of Total Phenolics. In: Wrolstad, R. E. (ed.) Current Protocols in Food Analytical Chemistry. John Wiley & Sons, New York, pp. I1.1.1–I1.1.8.Google Scholar
  39. 39.
    Yiu, C. P. B., Chen, Y. W. (2017) From disorder to mis-order: Structural aspects of pathogenic oli-gomerization in conformational diseases. Protein Pept Lett. 24, 307–314.CrossRefGoogle Scholar
  40. 40.
    Zhang, H., Tsao, R. (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-infamma-tory effects. Curr. Opin. Food Sci. 8, 33–42.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Márta Kotormán
    • 1
    Email author
  • Zita Kelemen
    • 1
  • Phanindra Babu Kasi
    • 1
    • 2
  • János Nemcsók
    • 3
  1. 1.Department of Biochemistry and Molecular Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
  2. 2.Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
  3. 3.Department of Biology, Pedagogical FacultySelye János UniversityKomarnoSlovakia

Personalised recommendations