Inhibition of the Formation of Amyloid-Like Fibrils Using Herbal Extracts

Abstract

We tested the amyloid fibril formation inhibitory effect of seven teas diluted in 55% ethanol at pH 7.0 at a protein concentration of 0.15 mg/ml α-chymotrypsin. In the experiments we investigated the formation and inhibition of amyloid fibrils by turbidity measurements, aggregation kinetics experiments and Congo red binding assay. The results suggest that the different teas effectively inhibit the formation of amyloidlike fibrils. The two most potent inhibitors were peppermint and melilot, extracts which almost completely inhibited the formation of aggregates in 5-fold dilution. The inhibitory effect on the aggregation formation of melilot and peppermint extracts was concentration dependant. The extent of inhibition was found to be proportional with the total concentration of phenolic compounds.

References

  1. 1.

    Alexa, E., Danciu, C., Radulov, I., Obistioiu, D., Sumalan, R. M., Morar, A., Dehelean, C. A. (2018) Phytochemical screening and biologica activity of Mentha×piperita L. and Lavandula angustifolia Mill. extracts. Anal. Cell. Pathol. (Amst). 2018, 2678924.

  2. 2.

    Cascella, M., Bimonte, S., Muzio, M. R., Schiavone, V., Cuomo, A. (2017) The effcacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect. Agent. Cancer 12, 36.

  3. 3.

    Chaturvedi, S. K., Khan, J. M., Siddiqi, M. K., Alam, P., Khan, R. H. (2016) Comparative insight into surfactants mediated amyloidogenesis of lysozyme. Int. J. Biol. Macromol. 83, 315–325.

    CAS  Article  Google Scholar 

  4. 4.

    Cornejo, A., Aguilar Sandoval, F., Caballero, L., Machuca, L., Muñoz, P., Caballero, J., Perry, G., Ardiles, A., Areche, C., Melo, F. (2017) Rosmarinic acid prevents fbrillization and diminishes vibra-tional modes associated to β sheet in tau protein linked to Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 32, 945–953.

    CAS  Article  Google Scholar 

  5. 5.

    Dobson, C. M. (2006) Protein aggregation and its consequences for human disease. Protein Pept Lett. 13, 219–227.

    CAS  Article  Google Scholar 

  6. 6.

    Dobson, C. M. (2017) The amyloid phenomenon and its links with human disease. Cold Spring Harb. Perspect. Biol. 9, pii: a023648.

  7. 7.

    Fecka, I., Turek, S. (2007) Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, melissa, and sage. J. Agric. Food Chem. 55, 10908–10917.

    CAS  Article  Google Scholar 

  8. 8.

    Fernando, W. M. A. D. B., Somaratne, G., Goozee, K. G., Williams, S., Singh, H., Martins, R. N. (2017) Diabetes and Alzheimer’s disease: Can tea phytochemicals play a role in prevention? J. Alzheimers Dis. 59, 481–501.

    CAS  Article  Google Scholar 

  9. 9.

    Fuentes, A. L., Hennessy, K., Pascual, J., Pepe, N., Wang, I., Santiago, A., Chaggan, C., Martinez, J., Rivera, E., Cota, P., Cunha, C., Nogaj, L. A., Moffet, D. A. (2016) Identifcation of plant extracts that inhibit the formation of diabetes-linked IAPP Amyloid. J. Herb. Med. 6, 37–41.

    Article  Google Scholar 

  10. 10.

    Gazova, Z., Siposova, K., Kurin, E., Mucaji, P., Nagy, M. (2013) Amyloid aggregation of lysozyme: the synergy study of red wine polyphenols. Proteins 81, 994–1004.

    CAS  Article  Google Scholar 

  11. 11.

    He, J., Xing, Y. F., Huang, B., Zhang, Y. Z., Zeng, C. M. (2009) Tea catechins induce the conversion of preformed lysozyme amyloid fbrils to amorphous aggregates. J. Agric. Food Chem. 57, 11391–11396.

    CAS  Article  Google Scholar 

  12. 12.

    Hsu, S. S., Chou, C. T., Liao, W. C., Shieh, P., Kuo, D. H., Kuo, C. C., Jan, C. R., Liang, W. Z. (2016) The effect of gallic acid on cytotoxicity, Ca2+ homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem. Biol. Interact. 252, 61–73.

    CAS  Article  Google Scholar 

  13. 13.

    Hu, H. Y. (2017) Structural aspects of protein aggregation. Protein Pept Lett. 24, 280.

    CAS  Article  Google Scholar 

  14. 14.

    Jayamani, J., Shanmugam, G. (2014) Gallic acid one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fbril formation. Eur. J. Med. Chem. 85, 352–358.

    CAS  Article  Google Scholar 

  15. 15.

    Kamihira-Ishijima, M., Nakazawa, H., Kira, A., Naito, A., Nakayama, T. (2012) Inhibitory mechanism of pancreatic amyloid fbril formation: formation of the complex between tea catechins and the fragment of residues 22-27. Biochemistry 51, 10167–10174.

    CAS  Article  Google Scholar 

  16. 16.

    Khan, E., Mishra, S. K., Kumar, A. (2017) Emerging methods for structural analysis of protein aggregation. Protein Pept Lett. 24, 331–339.

    Article  Google Scholar 

  17. 17.

    Klunk, W. E., Jacob, R. F., Mason, R. P. (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal. Biochem. 266, 66–76.

    CAS  Article  Google Scholar 

  18. 18.

    Knowles, T. P., Vendruscolo, M., Dobson, C. M. (2014) The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396.

    CAS  Article  Google Scholar 

  19. 19.

    Konar, M., Bag, S., Roy, P., Dasgupta, S. (2017) Gallic acid induced dose dependent inhibition of lysozyme fbrillation. Int. J. Biol. Macromol. 103, 1224–1231.

    CAS  Article  Google Scholar 

  20. 20.

    Kong, L. X. Zeng, C. M. (2017) Effects of seeding on lysozyme amyloid fbrillation in the presence of epigallocatechin and polyethylene glycol. Biochemistry (Mosc). 82, 156–167.

    CAS  Article  Google Scholar 

  21. 21.

    Kotormán, M., Kasi, P. B., Halász, L., Borics, A. (2017) Inhibition of amyloid-like fbril formation of trypsin by red wines. Protein Pept. Lett. 24, 466–470.

    Article  Google Scholar 

  22. 22.

    Kulandaivelu, K., Azad, M. A. K. (2016) Nanoencapsulated tea polyphenols as anticancer agent. Research Journal of Biotechnology 11, 92–101.

    CAS  Google Scholar 

  23. 23.

    Kumar, E. K., Hague, N., Prabhu, N. P. (2017) Kinetics of protein fbril formation: Methods and mechanisms. Int. J. Biol. Macromol. 100, 3–10.

    CAS  Article  Google Scholar 

  24. 24.

    Ma, B., Zhang, F., Liu, Y., Xie, J., Wang, X. (2017) Resveratrol induces the conversion from amyloid to amorphous aggregation of β-lactoglobulin. Protein Pept Lett. 24, 1113–1119.

    CAS  Article  Google Scholar 

  25. 25.

    Nilsson, M. R. (2004) Techniques to study amyloid fbril formation in vitro. Methods 34, 151–160.

    CAS  Article  Google Scholar 

  26. 26.

    Omar, S. H. (2017) Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed. Pharmacother. 89, 396–413.

    CAS  Article  Google Scholar 

  27. 27.

    Peter, B., Bosze, S., Horvath, R. (2017) Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials. Eur. Biophys. J. 46, 1–24.

    CAS  Article  Google Scholar 

  28. 28.

    Radko, S. P., Khmeleva, S. A., Suprun, E. V., Kozin, S. A., Bodoev, N. V., Makarov, A. A., Archakov, A. I., Shumyantseva, V. V. (2015) Physico-chemical methods for studying amyloid-β aggregation. Biomed. Khim. 9, 258–274.

    Google Scholar 

  29. 29.

    Riachi, L. G., De Maria, C. A. (2015) Peppermint antioxidants revisited. Food Chem. 176, 72–81.

    CAS  Article  Google Scholar 

  30. 30.

    Riek, R. (2017) The three-dimensional structures of amyloids. Cold Spring Harb. Perspect. Biol. 9, pii: a023572.

  31. 31.

    Safra, J., Pospísilová, M., Honegr, J., Spilková, J. (2007) Determination of selected antioxidants in Melissae herba by isotachophoresis and capillary zone electrophoresis i the column-coupling con-fguration. J. Chromatogr. A1171, 124–132.

    Google Scholar 

  32. 32.

    Simon, L. M., Laczkó, I., Demcsák, A., Tóth, D., Kotormán, M., Fülöp, L. (2012) The formation of amyloid-like fbrils of α-chymotrypsin in different aqueous organic solvents. Protein Pept. Lett. 19, 544–550.

    CAS  Article  Google Scholar 

  33. 33.

    Soodi, M., Dashti, A., Hajimehdipoor, H., Akbari, S., Ataei, N. (2017) Melissa offcinalis acidic fraction protects cultured cerebellar granule neurons against beta amyloid-induced apoptosis and oxida-tive stress. Cell J. 18, 556–564.

    PubMed  Google Scholar 

  34. 34.

    Soto-Ortega, D. D., Murphy, B. P., Gonzalez-Velasquez, F. J., Wilson, K. A., Xie, F., Wang, Q., Moss, M. A. (2011) Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by func-tionalization of the aromatic center. Bioorg. Med. Chem. 19, 2596–2602.

    CAS  Article  Google Scholar 

  35. 35.

    Stefani, M., Rigacci, S. (2014) Benefcial properties of natural phenols: highlight on protection against pathological conditions associated with amyloid aggregation. Biofactors 40, 482–493.

    CAS  Article  Google Scholar 

  36. 36.

    Tamura, S., Warabi, Y., Matsubara, S. (2012) Severe liver dysfunction possibly caused by the combination of interferon beta-1b therapy and melilot (sweet clover) supplement. J. Clin. Pharm. Ther. 37, 724–725.

    CAS  Article  Google Scholar 

  37. 37.

    Wang, J. B., Wang, Y. M., Zeng, C. M. (2011) Quercetin inhibits amyloid fbrillation of bovine insulin and destabilizes preformed fbrils. Biochem. Biophys. Res. Commun. 415, 675–679.

    CAS  Article  Google Scholar 

  38. 38.

    Waterhouse, A. L. (2002) Determination of Total Phenolics. In: Wrolstad, R. E. (ed.) Current Protocols in Food Analytical Chemistry. John Wiley & Sons, New York, pp. I1.1.1–I1.1.8.

    Google Scholar 

  39. 39.

    Yiu, C. P. B., Chen, Y. W. (2017) From disorder to mis-order: Structural aspects of pathogenic oli-gomerization in conformational diseases. Protein Pept Lett. 24, 307–314.

    Article  Google Scholar 

  40. 40.

    Zhang, H., Tsao, R. (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-infamma-tory effects. Curr. Opin. Food Sci. 8, 33–42.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by project EFOP-3.6.1-16-2016-00008.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Márta Kotormán.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotormán, M., Kelemen, Z., Kasi, P.B. et al. Inhibition of the Formation of Amyloid-Like Fibrils Using Herbal Extracts. BIOLOGIA FUTURA 69, 125–134 (2018). https://doi.org/10.1556/018.69.2018.2.2

Download citation

Keywords

  • α-Chymotrypsin
  • amyloid fbrils
  • melilot
  • peppermint
  • polyphenols