ABA Regulation of Antioxidant Activity During Post-Germination Desiccation and Subsequent Rehydration in Wheat


ABA regulation of antioxidant activity during post-germination desiccation and subsequent rehydration was studied in two wheat cultivars PBW 644 (ABA-higher sensitive and drought tolerant) and PBW 343 (ABA-lesser sensitive and drought susceptible) where 1 d-germinated seeds were exposed to ABA/ PEG- 6000 for next 1 d, desiccated for 4 d and subsequently rehydrated for 4 d. Ascorbate, dehydrascorbate to ascorbate ratio, malondialdehyde (MDA), hydroxyl radicals, and activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), alcohol dehydrogenase (AlcDH) and aldehyde dehydrogenase (AldDH) were measured in seedlings just before desiccation (2 d old), desiccated (6 d old) and rehydrated (10 d old) stages. ROS/NO signaling was studied under CT and ABA supply by supplying ROS and NO scavengers. During desiccation, both cultivars showed increase of oxidative stress (dehydroascorbate to ascorbate ratio, MDA, hydroxyl radicals) and antioxidant activity in the form of ascorbate content and AldDH activity while other antioxidant enzymes were not increased. PBW 644 showed higher antioxidant activity thus produced less oxidative stress compared to PBW 343. During rehydration, activities of all antioxidant enzymes and levels of ROS (hydroxyl radicals) were increased in both cultivars and MDA was decreased in PBW 343. ABA supply improved desiccation as well as rehydration by improving all parameters of antioxidant activity tested in this study. PEG supply resembled to ABA-supply for its effects. ABA/PEG improvements were seen higher in PBW 644. ROS/NO-signalling was involved under CT as well as under ABA for increasing antioxidant activity during desiccation as well as rehydration in both cultivars.


  1. 1.

    Arakawa, N., Tsutsumi, K., Sanceda, N. G., Kurata, T., Inagaki, C. (1981) A rapid and sensitive method for the determination of ascorbic acid using 4,7-Diphenyl-l,10-phenanthroline. Agric. Biol. Chem. 45, 1289–1290.

    CAS  Google Scholar 

  2. 2.

    Dekkers, B. J. W., Costa, M. C. D., Maia, J., Bentsink, L., Ligterink, W., Hilhorst, H. W. M. (2015) Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. Planta 241, 563–577.

    CAS  PubMed  Google Scholar 

  3. 3.

    Dinakar, C., Bartels, D. (2012) Light response, oxidative stress management and nucleic acid stability in closely related Linderniaceae species differing in desiccation tolerance. Planta 236, 541–555.

    CAS  PubMed  Google Scholar 

  4. 4.

    Dinakar, C., Bartels, D. (2013) Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome, and metabolome analysis. Front. Plant Sci. 4, e482.

    Google Scholar 

  5. 5.

    Fujii, H., Verslues, P. E., Zhu, J. K. (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Fukao, T., Kennedy, R. A., Yamasue, Y., Rumpho, M. E. (2003) Genetic and biochemical analysis of anaerobically-induced enzymes during seed germination of Echinochloa crus-galli varieties tolerant and intolerant of anoxia. J. Exp. Bot. 54, 1421–1429.

    CAS  PubMed  Google Scholar 

  7. 7.

    Gaff, D. F., Oliver, M. (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct. Plant Biol. 40, 315–328.

    Google Scholar 

  8. 8.

    Gechev, T. S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., Minkov, I., Hille, J., Temanni, M.-R., Marriott, A. S., Bergstrom, E., Thomas-Oates J., Antonio, C., Mueller-Roeber, B., Schippers, J. H. M., Fernie, A. R., Toneva, V. (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell. Mol. Life Sci. 70, 689–709.

    CAS  PubMed  Google Scholar 

  9. 9.

    Gill, S. S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.

    CAS  Google Scholar 

  10. 10.

    Haroldsen, V. M., Chi-Ham, C. L., Kulkarni, S., Lorence, A., Bennett, A. B. (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol. Biochem. 49, 1244–1249.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 180–198.

    Google Scholar 

  12. 12.

    Hossain, M. A., Bhattacharjee, S., Armin, S.-M., Qian, P., Xin, W., Li, H.-Y., Burritt, D. J., Fujita, M., Tran, L.-SP. (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front. Plant Sci. 6, e420.

    Google Scholar 

  13. 13.

    Huang, H., Song, S. (2013) Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process. Plant Physiol. Biochem. 68, 61–70.

    CAS  PubMed  Google Scholar 

  14. 14.

    Ingle, R. A., Schmidt, U. G., Farrant, J. M., Thomson, J. A., Sagadevan, G., Mundree, S. G. (2007) Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Cell Environ. 30, 435–446.

    CAS  PubMed  Google Scholar 

  15. 15.

    Jubany-Mari, T., Munne-Bosch, S., Alegre, L. (2010) Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascrobate. Plant Physiol. Biochem. 48, 351–358.

    CAS  PubMed  Google Scholar 

  16. 16.

    Kaur, L., Gupta, A. K., Zhawar, V. K. (2014) ABA improvement of antioxidant metabolism under water stress in two wheat cultivars contrasting in drought tolerance. Indian J. Plant Physiol. 19, 189–196.

    Google Scholar 

  17. 17.

    Kaur, R., Zhawar, V. K. (2017) Hydrogen peroxide and nitric oxide regulation of phenolic metabolism under water stress and ABA in wheat. Acta Biol. Hung. 68, 162–174.

    CAS  PubMed  Google Scholar 

  18. 18.

    Kerchev, P. I., Pellny, T. K., Vivancos, P. D., Kiddle, G., Hedden, P., Driscoll, S., Vanacker, H., Verrier, P., Hancock, R. D., Foyer, C. H. (2011) The transcription factor ABI4 is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent signaling pathways in Arabidopsis. Plant Cell 23, 3319–3334.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kirch, H. H., Nair, A., Bartels, D. (2001) Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J. 28, 555–567.

    CAS  PubMed  Google Scholar 

  20. 20.

    Kour, S., Zhawar, V. K. (2018) ABA regulation of post-germination desiccation tolerance in wheat cultivars contrasting in drought tolerance. An. Acad. Bras. Cienc. (Accepted).

    Google Scholar 

  21. 21.

    Kranner, I., Richard, P., Beckett, R. P., Wornik, S., Zorn, M., Pfeifhofer, H. W. (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J. 31, 13–24.

    CAS  Google Scholar 

  22. 22.

    Leprince, O., Buitink, J. (2010) Introduction to desiccation biology: from old borders to new frontiers. Planta 242, 369–378.

    Google Scholar 

  23. 23.

    Lopez-Molina, L., Mongrand, S., Kinoshita, N., Chua, N. H. (2003) AFP is a novel negative regulator of ABA signalling that promotes ABI5 protein degradation. Genes Dev. 17, 410–418.

    CAS  PubMed Central  Google Scholar 

  24. 24.

    Lopez-Molina, L., Mongrand, S., McLachlin, D. T., Chait, B. T., Chua, N. H. (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32, 317–328.

    CAS  PubMed  Google Scholar 

  25. 25.

    Lopez-Molina, L., Mongrand. S., Chua, N. H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl Acad. Sci. 98, 4782–4787.

    CAS  PubMed  Google Scholar 

  26. 26.

    Lyall, R., Ingle, R. A., Illing, N. (2014) The window of desiccation tolerance shown by early stage germination seedlings remains open in the resurrection plant, Xerophyta viscosa. PLoS ONE 9, e93093.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Maia, J., Dekkers, B. J. W., Provart, N. J., Ligterink, W., Hilhorst, H. W. M. (2011) The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome. PLoS ONE 6, e29123.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Maia, J., Dekkers, B. J., Dolle, M. J., Ligterink, W., Hilhorst, H. W. (2014) Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds. New Phytol. 203, 81–93.

    CAS  PubMed  Google Scholar 

  29. 29.

    Masetto, T. E., Faria, J. M., Fraiz, A. C. R. (2014) Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds. An. Acad. Bras. Cienc. 86, 1273–1285.

    CAS  PubMed  Google Scholar 

  30. 30.

    Miller, G., Suzuki, N., Sultan, C. Y., Mittler, R. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stress. Plant Cell. Environ. 33, 453–467.

    CAS  PubMed  Google Scholar 

  31. 31.

    Moore, J. P., Le, N. T., Brandt, W. F., Driouich, A., Farrant, J. M. (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plant. Sci. 14, 110–117.

    CAS  PubMed  Google Scholar 

  32. 32.

    Nedeva, D., Nikolova, A. (1997) Desiccation tolerance in developing seeds. Bulg. J. Plant Physiol. 23, 100–113.

    CAS  Google Scholar 

  33. 33.

    Omoto, E., Nagao, H., Taniguchi, M., Miyake, H. (2013) Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity. Plant Physiol. 149, 1–12.

    CAS  Google Scholar 

  34. 34.

    Perez-Lopez, U., Robredo, A., Lacuesta, M., Sgherri, C., Munoz-Rueda, A., Navari-Izzo, F., Mena-Petite, A. (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol. Plant. 135, 29–42.

    CAS  PubMed  Google Scholar 

  35. 35.

    Rodriguez, M. C. S., Edsgard, D., Hussain, S. S., Alquezar, D., Rasmussen, M., Gilbert, T., Nielsen, B. H., Bartels, D., John Mundy, J. (2010) Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 63, 212–228.

    CAS  PubMed  Google Scholar 

  36. 36.

    Santisree, P., Bhatnagar-Mathur, P., Sharma, K. K. (2015) NO to drought-multifunctional role of nitric oxide in plant drought: Do we have all the answers? Plant Sci. 239, 44–55.

    CAS  PubMed  Google Scholar 

  37. 37.

    Sgherri, C., Stevanovic, B., Navari-Izzo, F. (2004) Role of phenolic acid during dehydration and rehydration of Ramonda serbica. Physiol. Plant. 122, 478–485.

    CAS  Google Scholar 

  38. 38.

    Sunkar, R., Bartels, D., Kirch, H. H. (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant. J. 35, 452–464.

    CAS  PubMed  Google Scholar 

  39. 39.

    Veljovic-Jovanovic, S., Kukavica, B., Navari-Izzo, F. (2008) Characterization of polyphenol oxidase changes induced by desiccation of Ramonda serbica leaves. Physiol. Plant. 132, 407–416.

    CAS  PubMed  Google Scholar 

  40. 40.

    Vieira, C. V., Amaral da Silva, E. A., de Alvarenga, A. A., de Castro, E. M., Toorop, P. E. (2010) Stress-associated factors increase after desiccation of germinated seeds of Tabebuia impetiginosa Mart. Plant Growth. Regul. 62, 257–263.

    CAS  Google Scholar 

  41. 41.

    Weitbrecht, K., Muller, K., Leubner-Metzger, G. (2011) First off the mark: early seed germination. J. Exp. Bot. 62, 3289–3309.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Satinder Kour.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kour, S., Zhawar, V.K. ABA Regulation of Antioxidant Activity During Post-Germination Desiccation and Subsequent Rehydration in Wheat. BIOLOGIA FUTURA 69, 283–299 (2018). https://doi.org/10.1556/018.68.2018.3.5

Download citation

Key words

  • Abscissic acid
  • antioxidant
  • nitric oxide
  • post-germination desiccation
  • reactive oxygen species