Acta Biologica Hungarica

, Volume 69, Issue 3, pp 283–299 | Cite as

ABA Regulation of Antioxidant Activity During Post-Germination Desiccation and Subsequent Rehydration in Wheat

  • Satinder KourEmail author
  • Vikramjit Kaur Zhawar


ABA regulation of antioxidant activity during post-germination desiccation and subsequent rehydration was studied in two wheat cultivars PBW 644 (ABA-higher sensitive and drought tolerant) and PBW 343 (ABA-lesser sensitive and drought susceptible) where 1 d-germinated seeds were exposed to ABA/ PEG- 6000 for next 1 d, desiccated for 4 d and subsequently rehydrated for 4 d. Ascorbate, dehydrascorbate to ascorbate ratio, malondialdehyde (MDA), hydroxyl radicals, and activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), alcohol dehydrogenase (AlcDH) and aldehyde dehydrogenase (AldDH) were measured in seedlings just before desiccation (2 d old), desiccated (6 d old) and rehydrated (10 d old) stages. ROS/NO signaling was studied under CT and ABA supply by supplying ROS and NO scavengers. During desiccation, both cultivars showed increase of oxidative stress (dehydroascorbate to ascorbate ratio, MDA, hydroxyl radicals) and antioxidant activity in the form of ascorbate content and AldDH activity while other antioxidant enzymes were not increased. PBW 644 showed higher antioxidant activity thus produced less oxidative stress compared to PBW 343. During rehydration, activities of all antioxidant enzymes and levels of ROS (hydroxyl radicals) were increased in both cultivars and MDA was decreased in PBW 343. ABA supply improved desiccation as well as rehydration by improving all parameters of antioxidant activity tested in this study. PEG supply resembled to ABA-supply for its effects. ABA/PEG improvements were seen higher in PBW 644. ROS/NO-signalling was involved under CT as well as under ABA for increasing antioxidant activity during desiccation as well as rehydration in both cultivars.

Key words

Abscissic acid antioxidant nitric oxide post-germination desiccation reactive oxygen species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arakawa, N., Tsutsumi, K., Sanceda, N. G., Kurata, T., Inagaki, C. (1981) A rapid and sensitive method for the determination of ascorbic acid using 4,7-Diphenyl-l,10-phenanthroline. Agric. Biol. Chem. 45, 1289–1290.Google Scholar
  2. 2.
    Dekkers, B. J. W., Costa, M. C. D., Maia, J., Bentsink, L., Ligterink, W., Hilhorst, H. W. M. (2015) Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. Planta 241, 563–577.PubMedGoogle Scholar
  3. 3.
    Dinakar, C., Bartels, D. (2012) Light response, oxidative stress management and nucleic acid stability in closely related Linderniaceae species differing in desiccation tolerance. Planta 236, 541–555.PubMedGoogle Scholar
  4. 4.
    Dinakar, C., Bartels, D. (2013) Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome, and metabolome analysis. Front. Plant Sci. 4, e482.Google Scholar
  5. 5.
    Fujii, H., Verslues, P. E., Zhu, J. K. (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485–494.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Fukao, T., Kennedy, R. A., Yamasue, Y., Rumpho, M. E. (2003) Genetic and biochemical analysis of anaerobically-induced enzymes during seed germination of Echinochloa crus-galli varieties tolerant and intolerant of anoxia. J. Exp. Bot. 54, 1421–1429.PubMedGoogle Scholar
  7. 7.
    Gaff, D. F., Oliver, M. (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct. Plant Biol. 40, 315–328.Google Scholar
  8. 8.
    Gechev, T. S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., Minkov, I., Hille, J., Temanni, M.-R., Marriott, A. S., Bergstrom, E., Thomas-Oates J., Antonio, C., Mueller-Roeber, B., Schippers, J. H. M., Fernie, A. R., Toneva, V. (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell. Mol. Life Sci. 70, 689–709.PubMedGoogle Scholar
  9. 9.
    Gill, S. S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.Google Scholar
  10. 10.
    Haroldsen, V. M., Chi-Ham, C. L., Kulkarni, S., Lorence, A., Bennett, A. B. (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol. Biochem. 49, 1244–1249.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 180–198.Google Scholar
  12. 12.
    Hossain, M. A., Bhattacharjee, S., Armin, S.-M., Qian, P., Xin, W., Li, H.-Y., Burritt, D. J., Fujita, M., Tran, L.-SP. (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front. Plant Sci. 6, e420.Google Scholar
  13. 13.
    Huang, H., Song, S. (2013) Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process. Plant Physiol. Biochem. 68, 61–70.PubMedGoogle Scholar
  14. 14.
    Ingle, R. A., Schmidt, U. G., Farrant, J. M., Thomson, J. A., Sagadevan, G., Mundree, S. G. (2007) Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Cell Environ. 30, 435–446.PubMedGoogle Scholar
  15. 15.
    Jubany-Mari, T., Munne-Bosch, S., Alegre, L. (2010) Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascrobate. Plant Physiol. Biochem. 48, 351–358.PubMedGoogle Scholar
  16. 16.
    Kaur, L., Gupta, A. K., Zhawar, V. K. (2014) ABA improvement of antioxidant metabolism under water stress in two wheat cultivars contrasting in drought tolerance. Indian J. Plant Physiol. 19, 189–196.Google Scholar
  17. 17.
    Kaur, R., Zhawar, V. K. (2017) Hydrogen peroxide and nitric oxide regulation of phenolic metabolism under water stress and ABA in wheat. Acta Biol. Hung. 68, 162–174.PubMedGoogle Scholar
  18. 18.
    Kerchev, P. I., Pellny, T. K., Vivancos, P. D., Kiddle, G., Hedden, P., Driscoll, S., Vanacker, H., Verrier, P., Hancock, R. D., Foyer, C. H. (2011) The transcription factor ABI4 is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent signaling pathways in Arabidopsis. Plant Cell 23, 3319–3334.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kirch, H. H., Nair, A., Bartels, D. (2001) Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J. 28, 555–567.PubMedGoogle Scholar
  20. 20.
    Kour, S., Zhawar, V. K. (2018) ABA regulation of post-germination desiccation tolerance in wheat cultivars contrasting in drought tolerance. An. Acad. Bras. Cienc. (Accepted).Google Scholar
  21. 21.
    Kranner, I., Richard, P., Beckett, R. P., Wornik, S., Zorn, M., Pfeifhofer, H. W. (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J. 31, 13–24.Google Scholar
  22. 22.
    Leprince, O., Buitink, J. (2010) Introduction to desiccation biology: from old borders to new frontiers. Planta 242, 369–378.Google Scholar
  23. 23.
    Lopez-Molina, L., Mongrand, S., Kinoshita, N., Chua, N. H. (2003) AFP is a novel negative regulator of ABA signalling that promotes ABI5 protein degradation. Genes Dev. 17, 410–418.PubMedCentralGoogle Scholar
  24. 24.
    Lopez-Molina, L., Mongrand, S., McLachlin, D. T., Chait, B. T., Chua, N. H. (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32, 317–328.PubMedGoogle Scholar
  25. 25.
    Lopez-Molina, L., Mongrand. S., Chua, N. H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl Acad. Sci. 98, 4782–4787.PubMedGoogle Scholar
  26. 26.
    Lyall, R., Ingle, R. A., Illing, N. (2014) The window of desiccation tolerance shown by early stage germination seedlings remains open in the resurrection plant, Xerophyta viscosa. PLoS ONE 9, e93093.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Maia, J., Dekkers, B. J. W., Provart, N. J., Ligterink, W., Hilhorst, H. W. M. (2011) The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome. PLoS ONE 6, e29123.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Maia, J., Dekkers, B. J., Dolle, M. J., Ligterink, W., Hilhorst, H. W. (2014) Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds. New Phytol. 203, 81–93.PubMedGoogle Scholar
  29. 29.
    Masetto, T. E., Faria, J. M., Fraiz, A. C. R. (2014) Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds. An. Acad. Bras. Cienc. 86, 1273–1285.PubMedGoogle Scholar
  30. 30.
    Miller, G., Suzuki, N., Sultan, C. Y., Mittler, R. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stress. Plant Cell. Environ. 33, 453–467.PubMedGoogle Scholar
  31. 31.
    Moore, J. P., Le, N. T., Brandt, W. F., Driouich, A., Farrant, J. M. (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plant. Sci. 14, 110–117.PubMedGoogle Scholar
  32. 32.
    Nedeva, D., Nikolova, A. (1997) Desiccation tolerance in developing seeds. Bulg. J. Plant Physiol. 23, 100–113.Google Scholar
  33. 33.
    Omoto, E., Nagao, H., Taniguchi, M., Miyake, H. (2013) Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity. Plant Physiol. 149, 1–12.Google Scholar
  34. 34.
    Perez-Lopez, U., Robredo, A., Lacuesta, M., Sgherri, C., Munoz-Rueda, A., Navari-Izzo, F., Mena-Petite, A. (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol. Plant. 135, 29–42.PubMedGoogle Scholar
  35. 35.
    Rodriguez, M. C. S., Edsgard, D., Hussain, S. S., Alquezar, D., Rasmussen, M., Gilbert, T., Nielsen, B. H., Bartels, D., John Mundy, J. (2010) Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 63, 212–228.PubMedGoogle Scholar
  36. 36.
    Santisree, P., Bhatnagar-Mathur, P., Sharma, K. K. (2015) NO to drought-multifunctional role of nitric oxide in plant drought: Do we have all the answers? Plant Sci. 239, 44–55.PubMedGoogle Scholar
  37. 37.
    Sgherri, C., Stevanovic, B., Navari-Izzo, F. (2004) Role of phenolic acid during dehydration and rehydration of Ramonda serbica. Physiol. Plant. 122, 478–485.Google Scholar
  38. 38.
    Sunkar, R., Bartels, D., Kirch, H. H. (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant. J. 35, 452–464.PubMedGoogle Scholar
  39. 39.
    Veljovic-Jovanovic, S., Kukavica, B., Navari-Izzo, F. (2008) Characterization of polyphenol oxidase changes induced by desiccation of Ramonda serbica leaves. Physiol. Plant. 132, 407–416.PubMedGoogle Scholar
  40. 40.
    Vieira, C. V., Amaral da Silva, E. A., de Alvarenga, A. A., de Castro, E. M., Toorop, P. E. (2010) Stress-associated factors increase after desiccation of germinated seeds of Tabebuia impetiginosa Mart. Plant Growth. Regul. 62, 257–263.Google Scholar
  41. 41.
    Weitbrecht, K., Muller, K., Leubner-Metzger, G. (2011) First off the mark: early seed germination. J. Exp. Bot. 62, 3289–3309.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Biochemistry, College of Basic Sciences & HumanitiesPunjab Agricultural UniversityLudhianaIndia

Personalised recommendations