Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 3, pp 270–282 | Cite as

GmLEA2-1, a Late Embryogenesis Abundant Protein Gene Isolated from Soybean (Glycine max (L.) Merr.), Confers Tolerance to Abiotic Stress

  • Zhikun Wang
  • Qiang Yang
  • Yupeng Shao
  • Binbin Zhang
  • Aiyun Feng
  • Fanli Meng
  • Wenbin LiEmail author
Article

Abstract

Late embryonic proteins (LEA) gene family was abundant mainly in higher plant embryos, which could protect the embryos from the damage caused by abiotic stress, especially drought and salt stresses. In the present study, GmLEA2-1 was cloned from soybean leaf tissue treated by 10% polyethylene glycol 6000 (PEG6000). The results of quantitative real-time PCR (qRT-PCR) revealed a variety of expression patterns of GmLEA2-1 in various tissues of soybean (root, stem, leaf, flower, pod, early embryo and late embryo). GmLEA2-1 gene shared a lower sequence similarity with other typical LEA genes of same group from different species, but similar functions. Overexpression of GmLEA2-1 in transgenic Arabidopsis thaliana conferred tolerance to drought and salt stresses. The fresh weight and dry weight of seedling, the primary root length and the lateral root density of transgenic Arabidopsis plants were higher than those of wild type Arabidopsis (WT) under drought and salt stresses. Cis-acting regulatory elements in the GmLEA2-1 promoter were also predicted. These data demonstrate that GmLEA2-1 protein play an important role in improving drought and salt tolerance in plants.

Key words

GmLEA2-1 Stress tolerance Soybean-promoter Transgenic Arabidopsis thaliana 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, H., Urao, T._Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63–78.CrossRefGoogle Scholar
  2. 2.
    Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., Shinozaki, K. (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859–1868.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Banerjee, A., Roychoudhury, A. (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Reg. 79, 1–17.CrossRefGoogle Scholar
  4. 4.
    Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, Campos, F., Covarrubias, A. A. (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148, 6–24.CrossRefGoogle Scholar
  5. 5.
    Bhatnagar-Mathur, P., Vadez, V., Sharma, K. (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27, 411–424.CrossRefGoogle Scholar
  6. 6.
    Boucher, V., Buitink, J., Lin, X., Boudet, J., Hoekstra, F. A., Hundertmark, M., Renard, D., Leprince, O. (2009) MtPM25 is an atypical hydrophobic late embryogenesis abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell Environ. 33, 418–430.CrossRefGoogle Scholar
  7. 7.
    Cuming, A. C. (1999) LEA protein. In: Casey, R., Shewry, P. R. (eds), Seed proteins. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 753–780.CrossRefGoogle Scholar
  8. 8.
    Dure, L. (1993) Structural motifs in LEA proteins. In: Close, T. J., Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiologists, Rockville, MD, pp. 91–103.Google Scholar
  9. 9.
    Dure, L. III, Greenway, S. C., Galau, G. A. (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20, 4162–4168.CrossRefGoogle Scholar
  10. 10.
    Eycken, W., Engler, J. D. A., Inze, D., Montagu, M., Gheysen, G. (1996) A molecular study of rootknot nematode-induced feeding sites. Plant J. 9, 45–54.CrossRefGoogle Scholar
  11. 11.
    Goyal, K., Shinozaki, K. (2005) LEA proteins prevent protein aggregation due to water stress. Biochem. J. 388, 151–157.CrossRefGoogle Scholar
  12. 12.
    Haaning, S., Radutoiu, S., Hoffmann, S. V., Dittmer, J., Giehm, L., Otzen, D. E., Stougaard, J. (2008) An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro. J. Biol. Chem. 283, 31142–31152.CrossRefGoogle Scholar
  13. 13.
    He, S., Tan, L., Hu, Z., Chen, G., Wang, G., Hu, T. (2012) Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol. Genet. Genomics 287, 39–54.CrossRefGoogle Scholar
  14. 14.
    Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27, 297–300.CrossRefGoogle Scholar
  15. 15.
    Hughes, D. W., Galau, G. A. (1989) Temporally modular gene expression during cotyledon development. Genes Dev. 3, 358–369.CrossRefGoogle Scholar
  16. 16.
    Hundertmark, M., Hincha, D. K. (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9, 118–139.CrossRefGoogle Scholar
  17. 17.
    Imai, R., Chang, L., Ohta, A., Bray, E. A., Takagi, M. (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170, 243–248.CrossRefGoogle Scholar
  18. 18.
    Kim, H. S., Lee, J. H., Kim, J. J., Kim, C. H., Jun, S. S., Hong, Y. N. (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344, 115–123.CrossRefGoogle Scholar
  19. 19.
    Kyte, J., Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.CrossRefGoogle Scholar
  20. 20.
    Ling, H., Zeng, X., Guo, S. (2016) Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia solisystem. Sci. Rep. 6, 39693.CrossRefGoogle Scholar
  21. 21.
    Liu, M., Li, D. M., Wang, Z. K., Meng, F. Z., Li, Y. G., Wu, X. X., Teng, W. L., Han, Y. P., Li, W. B. (2012) Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant cell, Tissue Organ Cult. 111, 277–289.CrossRefGoogle Scholar
  22. 22.
    Maitra, N., Cushman, J. C. (1994) Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family late embryogenesis abundant protein. Plant Physiol. 106, 805–806.CrossRefGoogle Scholar
  23. 23.
    Menze, M. A., Boswell, L., Toner, M., Hand, S. C. (2009) Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J. Biol. Chem. 284, 10714–10719.CrossRefGoogle Scholar
  24. 24.
    Narusaka, Y., Nakashima, K., Shinwari, Z. K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 34, 137–148.CrossRefGoogle Scholar
  25. 25.
    Rodriguez-Valentin, R., Campos, F., Battaglia, M., Solorzano, R. M., Rosales, M. A. (2014) Group 6 late embryogenesis abundant (LEA) proteins in monocotyledonous plants: genomic organization and transcript accumulation patterns in response to stress in Oryza sativa. Plant Mol. Biol. Rep. 1, 198–208.CrossRefGoogle Scholar
  26. 26.
    Simpson, S. D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003) Two differed novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by deydration stress and dark-induced senescence. Plant J. 33, 259–270.CrossRefGoogle Scholar
  27. 27.
    Thomashow, M. F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rec. Plant Physiol. Plant Mol. Biol. 50, 571–599.CrossRefGoogle Scholar
  28. 28.
    Wang, M. W., Li, P., Li, C., Pan, Y. L., Jiang, X. Y., Zhu, D. Y., Zhao, Q., Yu, J. J. (2014) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol. 14, 290–305.CrossRefGoogle Scholar
  29. 29.
    Xu, D. (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249–257.CrossRefGoogle Scholar
  30. 30.
    Yamaguchi-Shinozaki, K., Shinozaki, K. (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoter. Trends Plant Sci. 10, 88–94.CrossRefGoogle Scholar
  31. 31.
    Zegzouti, H., Jones, B., Marty, C., Lelievre, J. M., Latche, A., Pech, J. C., Bouzayen, M. (1997) Er5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol. Bio. 35, 847–854.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Zhikun Wang
    • 1
  • Qiang Yang
    • 1
  • Yupeng Shao
    • 1
  • Binbin Zhang
    • 1
  • Aiyun Feng
    • 1
  • Fanli Meng
    • 1
  • Wenbin Li
    • 1
    Email author
  1. 1.Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast ChinaMinistry of Agriculture (Northeast Agricultural University)HarbinChina

Personalised recommendations