Acta Biologica Hungarica

, Volume 69, Issue 1, pp 72–85 | Cite as

Transfer of Egg White Proteins and Activation of Proteases During the Development of Anas Platyrhynchos Domestica Embryo

  • Seba Jamal ShbailatEmail author
  • Razan Ataallah Abuassaf


The route of egg white transfer into the yolk and the mechanisms underlying the digestion of egg proteins are unexplored in the fertilized egg of the duck, Anas platyrhynchos domestica. Here, we investigated the route(s) of egg white transfer and we determined the type of activated proteases during duck embryo development. Initially, we tested the electrophoretic patterns of egg proteins throughout development. Then, we used lysozyme as a reference protein to follow egg white transfer and we measured its activity. After that, we determined the type of activated proteases by employing different types of protease inhibitors. Several presumptive egg white protein bands appeared in different egg compartments. Also, lysozyme activity was detected chronologically on day 15 in the extraembryonic fuid, on day 17 in the amniotic and intestinal fuids and on day 19 in the yolk. Furthermore, acidic aspartic proteases seemed to be activated at hatch in the intestine and late in development in the yolk. Our results suggest that the main route of egg white transfer into the yolk is through the amniotic cavity and intestinal lumen. Also, the transferred egg white and endogenous yolk proteins are probably digested by the activated acidic proteases in the intestine and yolk.


Anas platyrhynchos domestica egg white egg yolk lysozyme proteases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ar, A. (1991) Egg water movements during incubation. In: Tullett, S. G. (ed.) Avian Incubation. Butterworth-Heinemann, London, pp. 157–173.Google Scholar
  2. 2.
    Baggott, G. K. (2009) Development of extra-embryonic membranes and fuid compartments. Avian Biol. Res. 2, 21–26.CrossRefGoogle Scholar
  3. 3.
    Baintner, K., Fehér, G. (1974) Fate of egg white trypsin inhibitor and start of proteolysis in developing chick embryo and newly hatched chick. Dev. Biol. 36, 272–278.CrossRefGoogle Scholar
  4. 4.
    Callewaert, L., Michiels, C. W. (2010) Lysozymes in the animal kingdom. J. Biosci. 35, 127–160.CrossRefGoogle Scholar
  5. 5.
    Carinci, P., Manzoli-Guidotti, L. (1968) Albumen absorption during chick embryogenesis. J. Embryol. Exp. Morphol. 20, 107–118.PubMedGoogle Scholar
  6. 6.
    Dong, X. Y., Wang, Y. M., Dai, L., Azzam, M. M., Wang, C., Zou, X. T. (2012) Posthatch development of intestinal morphology and digestive enzyme activities in domestic pigeons (Columba livia). Poult. Sci. 91, 1886–1892.CrossRefGoogle Scholar
  7. 7.
    Dong, X. Y., Wang, Y. M., Yuan, C., Zou, X. T. (2012) The ontogeny of nutrient transporter and digestive enzyme gene expression in domestic pigeon (Columba livia) intestine and yolk sac membrane during pre- and posthatch development. Poult. Sci. 91, 1974–1982.CrossRefGoogle Scholar
  8. 8.
    Esteban, S., Rayo, J., Moreno, M., Sastre, M., Rial, R., Tur, J. (1991) A role played by the vitelline diverticulum in the yolk sac resorption in young post hatched chickens. J. Comp. Physiol. B 160, 645–648.CrossRefGoogle Scholar
  9. 9.
    Hedstrom, L. (2002) Serine protease mechanism and specifcity. Chem. Rev. 102, 4501–4524.CrossRefGoogle Scholar
  10. 10.
    Hooper, N. M. (1994) Families of zinc metalloproteases. FEBS Lett. 354, 1–6.CrossRefGoogle Scholar
  11. 11.
    Hu, S., Qiu, N., Liu, Y., Zhao, H., Gao, D., Song, R., Ma, M. (2016) Identifcation and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-fight tandem mass spectrometry analysis. Poult. Sci. 95, 1137–1144.CrossRefGoogle Scholar
  12. 12.
    Kovacs-Nolan, J., Phillips, M., Mine, Y. (2005) Advances in the value of eggs and egg components for human health. J. Agric. Food Chem. 53, 8421–8431.CrossRefGoogle Scholar
  13. 13.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacterio-phage T4. Nature 227, 680–685.CrossRefGoogle Scholar
  14. 14.
    Marchaim, U., Kulka, R. G. (1967) The non-parallel increase of amylase, chymotrypsinogen and procarboxypeptidase in the developing chick pancreas. Biochim. Biophys. Acta 146, 553–559.CrossRefGoogle Scholar
  15. 15.
    Miguel, M., Manso, M. A., Lopez-Fandino, R., Ramos, M. (2005) Comparative study of egg white proteins from different species by chromatographic and electrophoretic methods. Eur. Food Res. Technol. 221, 542–546.CrossRefGoogle Scholar
  16. 16.
    Nisbet, A. D., Saundry, R. H., Moir, A. J., Fothergill, L. A., Fothergill, J. E. (1981) The complete amino-acid sequence of hen ovalbumin. Eur. J. Biochem. 115, 335–345.CrossRefGoogle Scholar
  17. 17.
    Noy, Y., Uni, Z., Sklan, D. (1996) Routes of yolk utilisation in the newly-hatched chick. Br. Poult. Sci. 37, 987–995.CrossRefGoogle Scholar
  18. 18.
    Romanoff, A. L. (1960) The Avian Embryo Structural and Functional Development. Macmillan, New York.Google Scholar
  19. 19.
    Saito, Z., Martin, W. G. (1966) Ovalbumin and other water soluble proteins in avian yolk during embryogenesis. Can. J. Biochem. 44, 293–301.CrossRefGoogle Scholar
  20. 20.
    Salton, M. J. R. (1957) The properties of lysozyme and its action on microorganisms. Bacteriol. Rev. 21, 82–98.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Shbailat, S. J., Qanadilo, S., Al-Soubani, F. A. (2016) Protease activity in the egg yolk during the development of Meleagris gallopavo (Galliformes: Phasianidae) embryos. Ital. J. Zool. 83, 291–297.CrossRefGoogle Scholar
  22. 22.
    Shbailat, S. J., Saf, H. M. (2015) Transfer of egg white proteins with reference to lysozyme during the development of Meleagris gallopavo (Galliformes: Phasianidae) embryos. Ital. J. Zool. 82, 349–357.CrossRefGoogle Scholar
  23. 23.
    Shugar, D. (1952) The measurement of lysozyme activity and the ultraviolet inactivation of lysozyme. Biochim. Biophys. Acta 8, 302–309.CrossRefGoogle Scholar
  24. 24.
    Sorkhabi-Abdolmaleki, S., Zibaee, A., Hoda, H., Hosseini, R., Fazeli-Dinan, M. (2013) Proteolytic compartmentalization and activity in the midgut of Andrallus spinidens Fabricius (Hemiptera: Pentatomidae). J. Entomol. Acarol. Res. 45(e8), 33–41.Google Scholar
  25. 25.
    Sugimoto, Y., Hanada, S., Koga, K., Skaguchi, B. (1984) Egg-yolktrypsin inhibitor identical to albumen ovomucoid. Biochim. Biophys. Acta 788, 117–123.CrossRefGoogle Scholar
  26. 26.
    Sugimoto, Y., Saito, A., Kusakabe, T., Hori, K., Koga, K. (1989) Flow of egg white ovalbumin into the yolk sac during embryogenesis. Biochim. Biophys. Acta 992, 400–403.CrossRefGoogle Scholar
  27. 27.
    Svihus, B. (2014) Function of the digestive system. J. App. Poult. Res. 23, 306–314.CrossRefGoogle Scholar
  28. 28.
    Uni, Z., Tako, E., Gal-Garber, O., Sklan, D. (2003) Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poult. Sci. 82, 1747–1754.CrossRefGoogle Scholar
  29. 29.
    Wouters, J., Goethals, M., Stockx, J. (1985) Acid proteases from the yolk and the yolk-sac of the hen’s egg. Purifcation, properties and identifcation as cathepsin D. Int. J. Biochem. 17, 405–413.CrossRefGoogle Scholar
  30. 30.
    Wu, J. (2014) Eggs and egg products processing. In: Clark, S., Jung, S., Lamsal, B. (eds) Food Processing: Principles and Applications. John Wiley & Sons, Ltd., New York, pp. 437–455.CrossRefGoogle Scholar
  31. 31.
    Yoshizaki, N., Ito, Y., Hori, H., Saito, H., Iwasawa, A. (2002) Absorption, transportation and digestion of egg white in quail embryos. Dev. Growth Differ. 44, 11–22.CrossRefGoogle Scholar
  32. 32.
    Yoshizaki, N., Soga, M., Ito, Y., Mao, K. M., Sultana, F., Yonezawa, S. (2004) Two-step consumption of yolk granules during the development of quail embryos. Dev. Growth Differ. 46, 229–238.CrossRefGoogle Scholar
  33. 33.
    Zelenitsky, D. K., Therrien, F., Ridgely, R. C., McGee, A. R., Witmer, L. M. (2011) Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc. Biol. Sci. 278, 3625–3634.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Seba Jamal Shbailat
    • 1
    Email author
  • Razan Ataallah Abuassaf
    • 1
  1. 1.Department of Biology and BiotechnologyThe Hashemite UniversityZarqaJordan

Personalised recommendations