Transfer of Egg White Proteins and Activation of Proteases During the Development of Anas Platyrhynchos Domestica Embryo


The route of egg white transfer into the yolk and the mechanisms underlying the digestion of egg proteins are unexplored in the fertilized egg of the duck, Anas platyrhynchos domestica. Here, we investigated the route(s) of egg white transfer and we determined the type of activated proteases during duck embryo development. Initially, we tested the electrophoretic patterns of egg proteins throughout development. Then, we used lysozyme as a reference protein to follow egg white transfer and we measured its activity. After that, we determined the type of activated proteases by employing different types of protease inhibitors. Several presumptive egg white protein bands appeared in different egg compartments. Also, lysozyme activity was detected chronologically on day 15 in the extraembryonic fuid, on day 17 in the amniotic and intestinal fuids and on day 19 in the yolk. Furthermore, acidic aspartic proteases seemed to be activated at hatch in the intestine and late in development in the yolk. Our results suggest that the main route of egg white transfer into the yolk is through the amniotic cavity and intestinal lumen. Also, the transferred egg white and endogenous yolk proteins are probably digested by the activated acidic proteases in the intestine and yolk.


  1. 1.

    Ar, A. (1991) Egg water movements during incubation. In: Tullett, S. G. (ed.) Avian Incubation. Butterworth-Heinemann, London, pp. 157–173.

    Google Scholar 

  2. 2.

    Baggott, G. K. (2009) Development of extra-embryonic membranes and fuid compartments. Avian Biol. Res. 2, 21–26.

    Article  Google Scholar 

  3. 3.

    Baintner, K., Fehér, G. (1974) Fate of egg white trypsin inhibitor and start of proteolysis in developing chick embryo and newly hatched chick. Dev. Biol. 36, 272–278.

    CAS  Article  Google Scholar 

  4. 4.

    Callewaert, L., Michiels, C. W. (2010) Lysozymes in the animal kingdom. J. Biosci. 35, 127–160.

    CAS  Article  Google Scholar 

  5. 5.

    Carinci, P., Manzoli-Guidotti, L. (1968) Albumen absorption during chick embryogenesis. J. Embryol. Exp. Morphol. 20, 107–118.

    CAS  PubMed  Google Scholar 

  6. 6.

    Dong, X. Y., Wang, Y. M., Dai, L., Azzam, M. M., Wang, C., Zou, X. T. (2012) Posthatch development of intestinal morphology and digestive enzyme activities in domestic pigeons (Columba livia). Poult. Sci. 91, 1886–1892.

    CAS  Article  Google Scholar 

  7. 7.

    Dong, X. Y., Wang, Y. M., Yuan, C., Zou, X. T. (2012) The ontogeny of nutrient transporter and digestive enzyme gene expression in domestic pigeon (Columba livia) intestine and yolk sac membrane during pre- and posthatch development. Poult. Sci. 91, 1974–1982.

    CAS  Article  Google Scholar 

  8. 8.

    Esteban, S., Rayo, J., Moreno, M., Sastre, M., Rial, R., Tur, J. (1991) A role played by the vitelline diverticulum in the yolk sac resorption in young post hatched chickens. J. Comp. Physiol. B 160, 645–648.

    Article  Google Scholar 

  9. 9.

    Hedstrom, L. (2002) Serine protease mechanism and specifcity. Chem. Rev. 102, 4501–4524.

    CAS  Article  Google Scholar 

  10. 10.

    Hooper, N. M. (1994) Families of zinc metalloproteases. FEBS Lett. 354, 1–6.

    CAS  Article  Google Scholar 

  11. 11.

    Hu, S., Qiu, N., Liu, Y., Zhao, H., Gao, D., Song, R., Ma, M. (2016) Identifcation and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-fight tandem mass spectrometry analysis. Poult. Sci. 95, 1137–1144.

    CAS  Article  Google Scholar 

  12. 12.

    Kovacs-Nolan, J., Phillips, M., Mine, Y. (2005) Advances in the value of eggs and egg components for human health. J. Agric. Food Chem. 53, 8421–8431.

    CAS  Article  Google Scholar 

  13. 13.

    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacterio-phage T4. Nature 227, 680–685.

    CAS  Article  Google Scholar 

  14. 14.

    Marchaim, U., Kulka, R. G. (1967) The non-parallel increase of amylase, chymotrypsinogen and procarboxypeptidase in the developing chick pancreas. Biochim. Biophys. Acta 146, 553–559.

    CAS  Article  Google Scholar 

  15. 15.

    Miguel, M., Manso, M. A., Lopez-Fandino, R., Ramos, M. (2005) Comparative study of egg white proteins from different species by chromatographic and electrophoretic methods. Eur. Food Res. Technol. 221, 542–546.

    CAS  Article  Google Scholar 

  16. 16.

    Nisbet, A. D., Saundry, R. H., Moir, A. J., Fothergill, L. A., Fothergill, J. E. (1981) The complete amino-acid sequence of hen ovalbumin. Eur. J. Biochem. 115, 335–345.

    CAS  Article  Google Scholar 

  17. 17.

    Noy, Y., Uni, Z., Sklan, D. (1996) Routes of yolk utilisation in the newly-hatched chick. Br. Poult. Sci. 37, 987–995.

    CAS  Article  Google Scholar 

  18. 18.

    Romanoff, A. L. (1960) The Avian Embryo Structural and Functional Development. Macmillan, New York.

    Google Scholar 

  19. 19.

    Saito, Z., Martin, W. G. (1966) Ovalbumin and other water soluble proteins in avian yolk during embryogenesis. Can. J. Biochem. 44, 293–301.

    CAS  Article  Google Scholar 

  20. 20.

    Salton, M. J. R. (1957) The properties of lysozyme and its action on microorganisms. Bacteriol. Rev. 21, 82–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Shbailat, S. J., Qanadilo, S., Al-Soubani, F. A. (2016) Protease activity in the egg yolk during the development of Meleagris gallopavo (Galliformes: Phasianidae) embryos. Ital. J. Zool. 83, 291–297.

    CAS  Article  Google Scholar 

  22. 22.

    Shbailat, S. J., Saf, H. M. (2015) Transfer of egg white proteins with reference to lysozyme during the development of Meleagris gallopavo (Galliformes: Phasianidae) embryos. Ital. J. Zool. 82, 349–357.

    CAS  Article  Google Scholar 

  23. 23.

    Shugar, D. (1952) The measurement of lysozyme activity and the ultraviolet inactivation of lysozyme. Biochim. Biophys. Acta 8, 302–309.

    CAS  Article  Google Scholar 

  24. 24.

    Sorkhabi-Abdolmaleki, S., Zibaee, A., Hoda, H., Hosseini, R., Fazeli-Dinan, M. (2013) Proteolytic compartmentalization and activity in the midgut of Andrallus spinidens Fabricius (Hemiptera: Pentatomidae). J. Entomol. Acarol. Res. 45(e8), 33–41.

    Google Scholar 

  25. 25.

    Sugimoto, Y., Hanada, S., Koga, K., Skaguchi, B. (1984) Egg-yolktrypsin inhibitor identical to albumen ovomucoid. Biochim. Biophys. Acta 788, 117–123.

    CAS  Article  Google Scholar 

  26. 26.

    Sugimoto, Y., Saito, A., Kusakabe, T., Hori, K., Koga, K. (1989) Flow of egg white ovalbumin into the yolk sac during embryogenesis. Biochim. Biophys. Acta 992, 400–403.

    CAS  Article  Google Scholar 

  27. 27.

    Svihus, B. (2014) Function of the digestive system. J. App. Poult. Res. 23, 306–314.

    CAS  Article  Google Scholar 

  28. 28.

    Uni, Z., Tako, E., Gal-Garber, O., Sklan, D. (2003) Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poult. Sci. 82, 1747–1754.

    CAS  Article  Google Scholar 

  29. 29.

    Wouters, J., Goethals, M., Stockx, J. (1985) Acid proteases from the yolk and the yolk-sac of the hen’s egg. Purifcation, properties and identifcation as cathepsin D. Int. J. Biochem. 17, 405–413.

    CAS  Article  Google Scholar 

  30. 30.

    Wu, J. (2014) Eggs and egg products processing. In: Clark, S., Jung, S., Lamsal, B. (eds) Food Processing: Principles and Applications. John Wiley & Sons, Ltd., New York, pp. 437–455.

    Google Scholar 

  31. 31.

    Yoshizaki, N., Ito, Y., Hori, H., Saito, H., Iwasawa, A. (2002) Absorption, transportation and digestion of egg white in quail embryos. Dev. Growth Differ. 44, 11–22.

    CAS  Article  Google Scholar 

  32. 32.

    Yoshizaki, N., Soga, M., Ito, Y., Mao, K. M., Sultana, F., Yonezawa, S. (2004) Two-step consumption of yolk granules during the development of quail embryos. Dev. Growth Differ. 46, 229–238.

    Article  Google Scholar 

  33. 33.

    Zelenitsky, D. K., Therrien, F., Ridgely, R. C., McGee, A. R., Witmer, L. M. (2011) Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc. Biol. Sci. 278, 3625–3634.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Seba Jamal Shbailat.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shbailat, S.J., Abuassaf, R.A. Transfer of Egg White Proteins and Activation of Proteases During the Development of Anas Platyrhynchos Domestica Embryo. BIOLOGIA FUTURA 69, 72–85 (2018).

Download citation


  • Anas platyrhynchos domestica
  • egg white
  • egg yolk
  • lysozyme
  • proteases