Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 1, pp 16–28 | Cite as

Intrathalamic Connections Shape Spindle Activity — A Modelling Study

  • Bálint Bús
  • Károly Antal
  • Zsuzsa EmriEmail author
Open Access
Article
  • 2 Downloads

Abstract

Spindle oscillations are generated predominantly during sleep state II, through cyclical interactions between thalamocortical and reticular neurons. Inhibition from reticular cells is critical for this activity; it enables burst fring by the de-inactivation of T-type Ca2+ channels. While the effect of different channelopathies on spindling is extensively investigated, our knowledge about the role of intrathalamic connections is limited. Therefore, we explored how the connection pattern and the density of reticular inhibitory synapses affect spindle activity in a thalamic network model. With more intrareticular connections, synchronous fring of reticular cells, and intraspindle burst frequency decreased, spindles lengthened. In models with strong intrareticular inhibition spindle activity was impaired, and a sustained 6–8 Hz oscillation was generated instead. The strength of reticular innervation onto thalamocortical cells played a key role in the generation of oscillations; it determined the amount of thalamocortical cell bursts, and consequently spindle length. Focal inputs supported bursts but affected only a few cells thus barely reinforced network activity, while diffuse contacts aided bursts only when a suffcient number of reticular cells fred synchronously. According to our study, alterations in the connection pattern infuence thalamic activities and may contribute to pathological conditions, or alternatively, they serve as a compensatory mechanism.

Keywords

Burst inhibition nucleus reticularis thalami spindle activity thalamocortical cell 

References

  1. 1.
    Avoli, M. (2012) A brief history on the oscillating roles of thalamus and cortex in absence seizures. Epilepsia 53, 779–789.CrossRefGoogle Scholar
  2. 2.
    Barthó, P., Slézia, A., Mátyás, F., Faradzs-Zade, L., Ulbert, I., Harris, K. D., Acsády, L. (2014) Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82, 1367–1379.CrossRefGoogle Scholar
  3. 3.
    Cavdar, S., Hacıioğlu, H., Doğukan, S. Y., Onat, F. (2012) Do the quantitative relationships of synaptic junctions and terminals in the thalamus of genetic absence epilepsy rats from Strasbourg (GAERS) differ from those in normal control Wistar rats? Neurol. Sci. 33, 251–259.CrossRefGoogle Scholar
  4. 4.
    Clemente-Perez, A., Makinson, S. R., Higashikubo, B., Brovarney, S., Cho, F. S., Urry, A., Holden, S. S., Wimer, M., Dávid, C., Fenno, L.E., Acsády, L., Deisseroth, K., Paz, J. T. (2017) Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep. 19, 2130–2142.CrossRefGoogle Scholar
  5. 5.
    Cox, C. L., Huguenard, J. R., Prince, D. A. (1997) Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proc. Natl. Acad. Sci. U. S. A. 94, 8854–8859.CrossRefGoogle Scholar
  6. 6.
    Destexhe, A., Contreras, D., Sejnowski, T. J., Steriade, M. (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J. Neurophysiol. 72, 803–818.CrossRefGoogle Scholar
  7. 7.
    Destexhe, A., Bal, T., McCormick, D. A., Sejnowski, T. J. (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol. 76, 2049–2070.CrossRefGoogle Scholar
  8. 8.
    Fama, R., Sullivan, E. V. (2015) Thalamic structures and associated cognitive functions: Relations with age and aging. Neurosci. Biobehav. Rev. 54, 29–37.CrossRefGoogle Scholar
  9. 9.
    Ferrarelli, F., Tononi, G. (2011) The thalamic reticular nucleus and schizophrenia. Schizophr. Bull. 37, 306–315.CrossRefGoogle Scholar
  10. 10.
    Fogerson, P. M., Huguenard, J. R. (2016) Tapping the brakes: cellular and synaptic mechanisms that regulate thalamic oscillations. Neuron 92, 687–704.CrossRefGoogle Scholar
  11. 11.
    Gentet, L. J., Ulrich, D. (2003) Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats. J. Physiol. 546, 801–811.CrossRefGoogle Scholar
  12. 12.
    Grant, E., Hoerder-Suabedissen, A., Molnár, Z. (2012) Development of the corticothalamic projections. Front Neurosci. 6, 53.CrossRefGoogle Scholar
  13. 13.
    Hines, M., Carnevale, T. (2015) NEURON simulation environment in: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer Science+Business Media, New York, pp. 2012–2017.Google Scholar
  14. 14.
    Hou, G., Smith, A. G., Zhang, Z. W. (2016) Lack of intrinsic GABAergic connections in the tha-lamic reticular nucleus of the mouse. J. Neurosci. 36, 7246–7252.CrossRefGoogle Scholar
  15. 15.
    von Krosigk, M., Bal, T., McCormick, D. A. (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261, 361–364.CrossRefGoogle Scholar
  16. 16.
    Lam, Y. W., Sherman, S. M. (2005) Mapping by laser photostimulation of connections between the thalamic reticular and ventral posterior lateral nuclei in the rat. J. Neurophysiol. 94, 2472–2483.CrossRefGoogle Scholar
  17. 17.
    Lee, S. E., Lee, J., Latchoumane, C., Lee, B., Oh, S. J., Saud, Z. A., Park, C., Sun, N., Cheong, E., Chen, C. C., Choi, E. J., Lee, C. J., Shin, H. S. (2014) Rebound burst fring in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proc. Natl Acad. Sci. U. S. A. 111, 11828–121833.CrossRefGoogle Scholar
  18. 18.
    Maheshwari, A., Noebels, J. L. (2014) Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. Prog. Brain Res. 213, 223–252.CrossRefGoogle Scholar
  19. 19.
    McCormick, D. A., Bal, T. (1997) Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215.CrossRefGoogle Scholar
  20. 20.
    Pinault, D. (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res. Revs, 46, 1–31.CrossRefGoogle Scholar
  21. 21.
    Schofeld, C. M., Kleiman-Weiner, M., Rudolph, U., Huguenard, J. R. (2009) A gain in GABAA receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures. Proc. Natl Acad. Sci. U. S. A. 106, 7630–7635.CrossRefGoogle Scholar
  22. 22.
    Sitnikova, E., Hramov, A. E., Grubov, V., Koronovsky, A. A. (2014) Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain Res. 1543, 290–299.CrossRefGoogle Scholar
  23. 23.
    Sohal, V. S., Huguenard, J. R. (2003) Inhibitory interconnections control burst pattern and emergent network synchrony in reticular thalamus. J. Neurosci. 23, 8978–8988.CrossRefGoogle Scholar
  24. 24.
    Sohal, V. S., Pangratz-Fuehrer, S., Rudolph, U., Huguenard, J. R. (2006) Intrinsic and synaptic dynamics interact to generate emergent patterns of rhythmic bursting in thalamocortical neurons. J. Neurosci. 26, 4247–4255.CrossRefGoogle Scholar
  25. 25.
    Tancredi, V., Biagini, G., D’Antuono, M., Louvel, J., Pumain, R., Avoli, M. (2000) Spindle-like thalamocortical synchronization in a rat brain slice preparation. J. Neurophysiol. 84, 1093–1097.CrossRefGoogle Scholar
  26. 26.
    Ujma, P. P., Konrad, B. N., Genzel, L., Bleifuss, A., Simor, P., Pótári, A., Körmendi, J., Gombos, F., Steiger, A., Bódizs, R., Dresler, M. (2014) Sleep spindles and intelligence: evidence for a sexual dimorphism. J. Neurosci. 34, 16358–16368.CrossRefGoogle Scholar
  27. 27.
    Zhou, C., Ding, L., Deel, M. E., Ferrick, E. A., Emeson, R. B., Gallagher, M. J. (2015) Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic absence epilepsy syndrome. Neurobiol. Dis. 73, 407–417.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes — if any — are indicated.

Authors and Affiliations

  1. 1.Department of ZoologyEszterházy Károly UniversityEgerHungary

Personalised recommendations