Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 4, pp 412–427 | Cite as

Salinity Tolerance of Grafted Watermelon Seedlings

  • Viktória BőhmEmail author
  • Dávid Fekete
  • Gábor Balázs
  • László Gáspár
  • Noémi Kappel
Article

Abstract

In order to evaluate the salinity tolerance of grafted watermelon, two sets of experiments were conducted in a growing chamber where ‘Esmeralda’ varieties were grafted onto interspecific squash (Cucurbita maxima Duch. × Cucurbita moschata Duch.) and Lagenaria siceraria rootstocks. Both non-grafted and self-garfted plants were used for control. For salt stress, 2.85 and 4.28 mM/l substrate doses of NaCl were added with each irrigation in 2 day intervals for a duration of 23 days. Interspecific-grafted plants showed the highest salinity tolerance as plant biomass and leaf area were not decreased but improved by salinity in most cases. Furthermore, transpiration and photosynthesis activity did not decrease as much as it did in the case of other grafting combinations. Interspecific and Lagenaria rootstocks showed sodium retention, as elevation of Na+ content in the leaves of these grafting combinations was negligible compared to self-grafted and non-grafted ones. Presumably abiotic stress tolerance can be enhanced by grafting per se considering measured parameters of self-grafted plants did not decrease as much as seen in non-grafted ones.

Keywords

Grafted watermelon interspecific rootstock Lagenaria salinity stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashraf M. (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol. Plantaru. 36, 255–259.CrossRefGoogle Scholar
  2. 2.
    Benzie, I. F., Strain, J. J. (1966) The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP essay. Anal. Biochem. 239, 70–76.CrossRefGoogle Scholar
  3. 3.
    Borochov-Neori, H., Borochov, A. (1991) Response of melon plants to salt: 1. Growth, morphology and root membrane properties. J. Plant Physiol. 139, 100–105.CrossRefGoogle Scholar
  4. 4.
    Bulder, H. A. M., van Hasselt, P. R., Kuiper, P. J. C., Speek, E. J., Den Nijs, A. P. M. (1990) The effect of low root temperature on growth and lipid composition of low temperature tolerant rootstock genotypes for cucumber. J. Plant Physiol. 138, 661–666.CrossRefGoogle Scholar
  5. 5.
    Cheeseuman, J. M. (1988) Mechanisms of salinity tolerance in plants. Plant Physio. 87, 547–550.CrossRefGoogle Scholar
  6. 6.
    Chanwitheesuk, A., Teerawutgulrag, A., Rakariyatham, N. (2005) Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food chemistr. 92, 491–497.CrossRefGoogle Scholar
  7. 7.
    Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., Rea, E. (2006a) Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J. Hortic Sci. Biotech. 81, 146–152.CrossRefGoogle Scholar
  8. 8.
    Colla, G., Roupheal, Y., Cardarelli, M. (2006b) Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hortic Sci. 41, 622–627.Google Scholar
  9. 9.
    Colla, G., Rouphael, Y., Leopardi, C., Bie, Z. (2010) Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. Amsterda. 127, 147–155.CrossRefGoogle Scholar
  10. 10.
    Colla, G., Rouphael, Y., Reac, E., Cardarelli, M. (2012) Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci. Hortic. Amsterda. 135, 177–185.CrossRefGoogle Scholar
  11. 11.
    Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., King, S. R., Cohen, R., Lee, J. M. (2008) Cucurbit grafting. Crit. Rev. Plant Sci. 27, 50–74.CrossRefGoogle Scholar
  12. 12.
    Dixon, R. A., Paiva, N. L. (1995) Stress-induced phenylpropanoid metabolism. The Plant Cell 7, 1085.CrossRefGoogle Scholar
  13. 13.
    Edelstein, M., Ben-Hur, M., Cohen, R., Burger, Y., Ravina, I. (2005) Boron and salinity effects on grafted and non-grafted melon plants. Plant Soi. 269, 273–284.CrossRefGoogle Scholar
  14. 14.
    Estañ, M. T., Martinez-Rodriguez, M. M., Perez-Alfocea, F., Flowers, T. J., Bolarin, M. C. (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56: 703–712.CrossRefGoogle Scholar
  15. 15.
    Goreta, S., Bucevic-Popovic, V., Selak, G. V., Pavela-Vrancic, M., Perica, S. (2008) Vegetative growth, superoxide dismutase activity and ion concentration of salt stressed watermelon as influenced by rootstock. J. Agr. Sci. 146, 695–704.CrossRefGoogle Scholar
  16. 16.
    Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Phys. 51, 463–499.CrossRefGoogle Scholar
  17. 17.
    George, E., Horst, W., Neumann, E. (2012) Saline soil. In: Marschner, P. (ed.) Mineral nutrition of higher plants. Academic Press, New York, pp. 455–473.Google Scholar
  18. 18.
    Kaya, C., Kirnak, Higgs, H., Saltali, K. (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic. Amsterda. 93, 65–72.CrossRefGoogle Scholar
  19. 19.
    Marschner H. (1995) Saline soil. In: Mineral nutrition of higher plants. Academic Press, New York, pp. 657–680.Google Scholar
  20. 20.
    Munns, R., Tester, M. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681.CrossRefGoogle Scholar
  21. 21.
    Orsini, F., Sanoubar, R., Oztekin, G. B., Kappel, N., Tepecik, M., Quacquarelli, C., Tuzel, Y., Bona, B., Gianquinto, G. (2013) Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Funct. Plant Biol. 40, 628–636.CrossRefGoogle Scholar
  22. 22.
    Otani, T., Seike, N. (2007) Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). J. Pestic. Sci. 32, 235–242.CrossRefGoogle Scholar
  23. 23.
    Proebsting, W. M., Hedden, P., Lewis, M. J., Croker, S. J., Proebsting, L. N. (1992) Gibberellin concentration and transport in genetic lines of pea effects of grafting. Plant Physio. 100, 1354–1360.CrossRefGoogle Scholar
  24. 24.
    Pulgar, G., Villora, G., Moreno, D. A., Romero, L. (2000) Improving the mineral nutrition in grafted watermelon plants: Nitrogen metabolism. Biol. Plantaru. 43, 607–609.CrossRefGoogle Scholar
  25. 25.
    Rezazadeh, A., Ghasemnezhad, A., Barani, M., Telmadarrehei, T. (2012) Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res. J. Med. Plan. 6, 245–252.CrossRefGoogle Scholar
  26. 26.
    Rivero, R. M., Ruiz, J. M., Romero, L. (2003a) Role of grafting in horticultural plants under stress conditions. J. Food Agric. Environ. 1, 70–74.Google Scholar
  27. 27.
    Rivero, R. M., Ruiz, J. M., Sanchez, E., Romero, L. (2003b) Does grafting provide tomato plants and advantages against H2O2 production under conditions of thermal shock? Plant Physiol. 117, 44–50.CrossRefGoogle Scholar
  28. 28.
    Romera, F. J., Alcántara, E., De La Guardia, M. D. (1991) Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. Plant Soi. 130, 121–125.CrossRefGoogle Scholar
  29. 29.
    Romero, L., Belakbir, A., Ragala, L., Ruiz, M. (1997) Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci. Plant Nutr. 41, 855–862.CrossRefGoogle Scholar
  30. 30.
    Rouphael, Y., Cardarelli, M., Rea, E., Colla, G. (2008) Grafting of cucumber as a means to minimize copper toxicity. Environ. Exp. Bot. 63, 49–58.CrossRefGoogle Scholar
  31. 31.
    Ruiz, J. M., Belakbir, A., Lopez-Cantarero, I., Romero, L. (1997) Leaf macronutrient content and yield in grafted melon plants: a model to evaluate the influence of rootstocks genotype. Sci. Hortic- Amsterdam 71, 227–234.CrossRefGoogle Scholar
  32. 32.
    Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., de Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., Montesinos, C. (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50, 1023–1036.CrossRefGoogle Scholar
  33. 33.
    Singleton, V. L., Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolibdic-phosphotunstic acid reagents. Am. J. Enol. Viticul. 161, 144–158.Google Scholar
  34. 34.
    Wei, G. Y., Zhu, Z., Liu, L., Yang, G., Zhang (2007) Growth and ion distribution in grafted eggplant seedling under NaCl stress. Acta Bot. Sin. 27, 1172–1178.Google Scholar
  35. 35.
    Yetisir, H., Uygur, V. (2010) Responses of grafted watermelon onto different gourd species to salinity stress. J. Plant Nutr. 33, 315–327.CrossRefGoogle Scholar
  36. 36.
    Zhu, J., Bie, Z. L., Huang, Y., Han, X. Y. (2008) Effect of grafting on the growth and ion contents of cucumber seedlings under NaCl stress. Soil Sci. Plant Nutr. 54, 895–902.CrossRefGoogle Scholar
  37. 37.
    Zhen, Z., Bie, Y., Huang, Z., Liu, Q. L. (2010) Effects of scion and rootstock genotypes on the antioxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Sci. Plant Nutr. 56, 263–271.CrossRefGoogle Scholar
  38. 38.
    Zhu, S. N., Guo, S. R. (2009) Effects of Grafting on K+, Na+ Contents and Distribution of Watermelon (Citrullus vulgaris Schrad.) Seedlings Under NaCl Stress. Acta Hortic Sin. 36, 814–820.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Viktória Bőhm
    • 1
    Email author
  • Dávid Fekete
    • 1
  • Gábor Balázs
    • 1
  • László Gáspár
    • 2
  • Noémi Kappel
    • 1
  1. 1.Faculty of Horticultural Science, Department of Vegetable and Mushroom GrowingSzent István UniversityBudapestHungary
  2. 2.Faculty of Horticultural Science, Department of Plant Physiology and Plant BiochemistrySzent István UniversityBudapestHungary

Personalised recommendations