Salinity Tolerance of Grafted Watermelon Seedlings

Abstract

In order to evaluate the salinity tolerance of grafted watermelon, two sets of experiments were conducted in a growing chamber where ‘Esmeralda’ varieties were grafted onto interspecific squash (Cucurbita maxima Duch. × Cucurbita moschata Duch.) and Lagenaria siceraria rootstocks. Both non-grafted and self-garfted plants were used for control. For salt stress, 2.85 and 4.28 mM/l substrate doses of NaCl were added with each irrigation in 2 day intervals for a duration of 23 days. Interspecific-grafted plants showed the highest salinity tolerance as plant biomass and leaf area were not decreased but improved by salinity in most cases. Furthermore, transpiration and photosynthesis activity did not decrease as much as it did in the case of other grafting combinations. Interspecific and Lagenaria rootstocks showed sodium retention, as elevation of Na+ content in the leaves of these grafting combinations was negligible compared to self-grafted and non-grafted ones. Presumably abiotic stress tolerance can be enhanced by grafting per se considering measured parameters of self-grafted plants did not decrease as much as seen in non-grafted ones.

References

  1. 1.

    Ashraf M. (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol. Plantaru. 36, 255–259.

    CAS  Article  Google Scholar 

  2. 2.

    Benzie, I. F., Strain, J. J. (1966) The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP essay. Anal. Biochem. 239, 70–76.

    Article  Google Scholar 

  3. 3.

    Borochov-Neori, H., Borochov, A. (1991) Response of melon plants to salt: 1. Growth, morphology and root membrane properties. J. Plant Physiol. 139, 100–105.

    CAS  Article  Google Scholar 

  4. 4.

    Bulder, H. A. M., van Hasselt, P. R., Kuiper, P. J. C., Speek, E. J., Den Nijs, A. P. M. (1990) The effect of low root temperature on growth and lipid composition of low temperature tolerant rootstock genotypes for cucumber. J. Plant Physiol. 138, 661–666.

    Article  Google Scholar 

  5. 5.

    Cheeseuman, J. M. (1988) Mechanisms of salinity tolerance in plants. Plant Physio. 87, 547–550.

    Article  Google Scholar 

  6. 6.

    Chanwitheesuk, A., Teerawutgulrag, A., Rakariyatham, N. (2005) Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food chemistr. 92, 491–497.

    CAS  Article  Google Scholar 

  7. 7.

    Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., Rea, E. (2006a) Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J. Hortic Sci. Biotech. 81, 146–152.

    Article  Google Scholar 

  8. 8.

    Colla, G., Roupheal, Y., Cardarelli, M. (2006b) Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hortic Sci. 41, 622–627.

    CAS  Google Scholar 

  9. 9.

    Colla, G., Rouphael, Y., Leopardi, C., Bie, Z. (2010) Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. Amsterda. 127, 147–155.

    Article  Google Scholar 

  10. 10.

    Colla, G., Rouphael, Y., Reac, E., Cardarelli, M. (2012) Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci. Hortic. Amsterda. 135, 177–185.

    CAS  Article  Google Scholar 

  11. 11.

    Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., King, S. R., Cohen, R., Lee, J. M. (2008) Cucurbit grafting. Crit. Rev. Plant Sci. 27, 50–74.

    Article  Google Scholar 

  12. 12.

    Dixon, R. A., Paiva, N. L. (1995) Stress-induced phenylpropanoid metabolism. The Plant Cell 7, 1085.

    CAS  Article  Google Scholar 

  13. 13.

    Edelstein, M., Ben-Hur, M., Cohen, R., Burger, Y., Ravina, I. (2005) Boron and salinity effects on grafted and non-grafted melon plants. Plant Soi. 269, 273–284.

    CAS  Article  Google Scholar 

  14. 14.

    Estañ, M. T., Martinez-Rodriguez, M. M., Perez-Alfocea, F., Flowers, T. J., Bolarin, M. C. (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56: 703–712.

    Article  Google Scholar 

  15. 15.

    Goreta, S., Bucevic-Popovic, V., Selak, G. V., Pavela-Vrancic, M., Perica, S. (2008) Vegetative growth, superoxide dismutase activity and ion concentration of salt stressed watermelon as influenced by rootstock. J. Agr. Sci. 146, 695–704.

    CAS  Article  Google Scholar 

  16. 16.

    Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Phys. 51, 463–499.

    CAS  Article  Google Scholar 

  17. 17.

    George, E., Horst, W., Neumann, E. (2012) Saline soil. In: Marschner, P. (ed.) Mineral nutrition of higher plants. Academic Press, New York, pp. 455–473.

    Google Scholar 

  18. 18.

    Kaya, C., Kirnak, Higgs, H., Saltali, K. (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic. Amsterda. 93, 65–72.

    CAS  Article  Google Scholar 

  19. 19.

    Marschner H. (1995) Saline soil. In: Mineral nutrition of higher plants. Academic Press, New York, pp. 657–680.

    Google Scholar 

  20. 20.

    Munns, R., Tester, M. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681.

    CAS  Article  Google Scholar 

  21. 21.

    Orsini, F., Sanoubar, R., Oztekin, G. B., Kappel, N., Tepecik, M., Quacquarelli, C., Tuzel, Y., Bona, B., Gianquinto, G. (2013) Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Funct. Plant Biol. 40, 628–636.

    CAS  Article  Google Scholar 

  22. 22.

    Otani, T., Seike, N. (2007) Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). J. Pestic. Sci. 32, 235–242.

    CAS  Article  Google Scholar 

  23. 23.

    Proebsting, W. M., Hedden, P., Lewis, M. J., Croker, S. J., Proebsting, L. N. (1992) Gibberellin concentration and transport in genetic lines of pea effects of grafting. Plant Physio. 100, 1354–1360.

    CAS  Article  Google Scholar 

  24. 24.

    Pulgar, G., Villora, G., Moreno, D. A., Romero, L. (2000) Improving the mineral nutrition in grafted watermelon plants: Nitrogen metabolism. Biol. Plantaru. 43, 607–609.

    CAS  Article  Google Scholar 

  25. 25.

    Rezazadeh, A., Ghasemnezhad, A., Barani, M., Telmadarrehei, T. (2012) Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res. J. Med. Plan. 6, 245–252.

    CAS  Article  Google Scholar 

  26. 26.

    Rivero, R. M., Ruiz, J. M., Romero, L. (2003a) Role of grafting in horticultural plants under stress conditions. J. Food Agric. Environ. 1, 70–74.

    Google Scholar 

  27. 27.

    Rivero, R. M., Ruiz, J. M., Sanchez, E., Romero, L. (2003b) Does grafting provide tomato plants and advantages against H2O2 production under conditions of thermal shock? Plant Physiol. 117, 44–50.

    CAS  Article  Google Scholar 

  28. 28.

    Romera, F. J., Alcántara, E., De La Guardia, M. D. (1991) Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. Plant Soi. 130, 121–125.

    CAS  Article  Google Scholar 

  29. 29.

    Romero, L., Belakbir, A., Ragala, L., Ruiz, M. (1997) Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci. Plant Nutr. 41, 855–862.

    Article  Google Scholar 

  30. 30.

    Rouphael, Y., Cardarelli, M., Rea, E., Colla, G. (2008) Grafting of cucumber as a means to minimize copper toxicity. Environ. Exp. Bot. 63, 49–58.

    CAS  Article  Google Scholar 

  31. 31.

    Ruiz, J. M., Belakbir, A., Lopez-Cantarero, I., Romero, L. (1997) Leaf macronutrient content and yield in grafted melon plants: a model to evaluate the influence of rootstocks genotype. Sci. Hortic- Amsterdam 71, 227–234.

    Article  Google Scholar 

  32. 32.

    Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., de Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., Montesinos, C. (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50, 1023–1036.

    CAS  Article  Google Scholar 

  33. 33.

    Singleton, V. L., Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolibdic-phosphotunstic acid reagents. Am. J. Enol. Viticul. 161, 144–158.

    Google Scholar 

  34. 34.

    Wei, G. Y., Zhu, Z., Liu, L., Yang, G., Zhang (2007) Growth and ion distribution in grafted eggplant seedling under NaCl stress. Acta Bot. Sin. 27, 1172–1178.

    CAS  Google Scholar 

  35. 35.

    Yetisir, H., Uygur, V. (2010) Responses of grafted watermelon onto different gourd species to salinity stress. J. Plant Nutr. 33, 315–327.

    CAS  Article  Google Scholar 

  36. 36.

    Zhu, J., Bie, Z. L., Huang, Y., Han, X. Y. (2008) Effect of grafting on the growth and ion contents of cucumber seedlings under NaCl stress. Soil Sci. Plant Nutr. 54, 895–902.

    CAS  Article  Google Scholar 

  37. 37.

    Zhen, Z., Bie, Y., Huang, Z., Liu, Q. L. (2010) Effects of scion and rootstock genotypes on the antioxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Sci. Plant Nutr. 56, 263–271.

    CAS  Article  Google Scholar 

  38. 38.

    Zhu, S. N., Guo, S. R. (2009) Effects of Grafting on K+, Na+ Contents and Distribution of Watermelon (Citrullus vulgaris Schrad.) Seedlings Under NaCl Stress. Acta Hortic Sin. 36, 814–820.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Viktória Bőhm.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bőhm, V., Fekete, D., Balázs, G. et al. Salinity Tolerance of Grafted Watermelon Seedlings. BIOLOGIA FUTURA 68, 412–427 (2017). https://doi.org/10.1556/018.68.2017.4.7

Download citation

Keywords

  • Grafted watermelon
  • interspecific rootstock
  • Lagenaria
  • salinity stress