Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 4, pp 345–357 | Cite as

Inhibitory Effects of Four Neonicotinoid Active Ingredients on Acetylcholine Esterase Activity

  • János Győri
  • Anna Farkas
  • Oksana Stolyar
  • András Székács
  • Mária Mörtl
  • Ágnes VehovszkyEmail author
Article

Abstract

There is a great concern about the decline of pollinators, and neonicotinoids emerging bee disorders are assumed to play a significant role. Since changes in learning ability has been observed in honey bees exposed to some acetylcholine esterase (AChE) inhibitors, we therefore, tested in vitro the effect of four neonicotinoids on purified eel AChE. AChE activity was inhibited in a concentration-dependent manner, and calculated IC50 values for thiamethoxam (IC50 = 414 μM) and clothianidin (IC50 = 160 μM) were found to be much higher compared to acetamiprid (IC50 = 75.2 μM) and thiacloprid (IC50 = 87.8 μM). The Lineweaver–Burk reciprocal plots for acetamiprid shows unchanged Vmax and increased Km values with inhibitor concentrations, while analysis of Michaelis–Menten plots shows predominantly competitive mechanism. The inhibition constant value (Ki = 24.3 μM) indicates strong binding of the acetamiprid complex to AChE. Finally, the four tested neonicotinoids are not a uniform group regarding their blocking ability. Our results suggest a previously not established, direct AChE blocking mechanism of neonicotinoids tested, thus the neuronal AChE enzyme is likely among the direct targets of the neonicotinoid insecticides. We conclude, that these AChE inhibitory effects may also contribute to toxic effects on the whole exposed animal.

Keywords

Neonicotinoids acetamiprid clothianidin thiamethoxam in vitro acetylcholinesterase assay 

Abbreviations

ACh

acetylcholine

AChE

acetylcholine esterase

ACT

acetamiprid

ATChI

acetylthiocholine iodide

CCD

Colony Collapse Disorder

CLO

clothianidin

DTNB

5,5′-dithiobis(2-nitrobenzoic acid)

nAChRs

nicotinic acetylcholine receptors

TIA

thiacloprid

TMX

thiamethoxam

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anhalt, J. C., Moorman, T. B., Koskinen, W. C. (2008) Degradation and sorption of imidacloprid in dissimilar surface and subsurface soils. J. Environ. Sci. Health. 43, 207–213.CrossRefGoogle Scholar
  2. 2.
    Badiou, A., Meled, M., Belzunces, L. P. (2008) Honeybee Apis mellifera acetylcholinesterase - a biomarker to detect deltamethrin exposure. Ecotoxicol. Environ. Saf. 69, 246–253.CrossRefGoogle Scholar
  3. 3.
    Blacquiere, T., Smagghe, G., van Gestel, C. A., Mommaerts, V. (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicolog. 21, 973–992.CrossRefGoogle Scholar
  4. 4.
    Boily, M., Sarrasin, B., Deblois, C., Aras, P., Chagnon, M. (2013) Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environ. Sci. Pollut. Res. Int. 20, 5603–5614.CrossRefGoogle Scholar
  5. 5.
    Cortes, A., Cascante, M., Cardenas, M. L., Cornish-Bowden, A. (2001) Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: new ways of analysing data. Biochem. J. 357, 263–268.CrossRefGoogle Scholar
  6. 6.
    Deglise, P., Grunewald, B., Gauthier, M. (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci. Lett. 321, 13–16.CrossRefGoogle Scholar
  7. 7.
    DeLorenzo, M. E., Thompson, B., Cooper, E., Moore, J., Fulton, M. H. (2012) A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek. Environ. Monit. Assess. 184, 343–359.CrossRefGoogle Scholar
  8. 8.
    El Hassani, A. K., Dacher, M., Gary, V., Lambin, M., Gauthier, M., Armengaud, C. (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch. Environ. Contam. Toxicol. 54, 653–661.CrossRefGoogle Scholar
  9. 9.
    Ellman, G. L., Courtney, K. D., Andres, V., Jr., Feather-Stone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95.CrossRefGoogle Scholar
  10. 10.
    Elston, C., Thompson, H. M., Walters, K. F. A. (2013) Sub-lethal effects of thiamethoxam, a neonicotinoid pesticide, and propiconazole, a DMI fungicide, on colony initiation in bumblebee (Bombus terrestris) micro-colonies. Apidologi. 44, 563–574.CrossRefGoogle Scholar
  11. 11.
    Girolami, V., Mazzon, L., Squartini, A., Mori, N., Marzaro, M., Di Bernardo, A., Greatti, M., Giorio, C., Tapparo, A. (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J. Econ. Entomol. 102, 1808–1815.CrossRefGoogle Scholar
  12. 12.
    Goulson, D. (2013) REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987.CrossRefGoogle Scholar
  13. 13.
    Iwasa, T., Motoyama, N., Ambrose, J. T., Roe, R. M. (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protectio. 23, 371–378.CrossRefGoogle Scholar
  14. 14.
    Jeschke, P., Nauen, R. (2008) Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag. Sci. 64, 1084–1098.CrossRefGoogle Scholar
  15. 15.
    Jeschke, P., Nauen, R., Schindler, M., Elbert, A. (2011) Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59, 2897–2908.CrossRefGoogle Scholar
  16. 16.
    Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G., Given, K. (2012) Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields. PLoS One 7.Google Scholar
  17. 17.
    Lamers, M., Anyusheva, M., La, N., Nguyen, V. V., Streck, T. (2011) Pesticide Pollution in Surfaceand Groundwater by Paddy Rice Cultivation: A Case Study from Northern Vietnam (vol 39, pg 356, 2011). Clean-Soil Air Wate. 39, 508–5008.CrossRefGoogle Scholar
  18. 18.
    Matsuda, K., Buckingham, S. D., Kleier, D., Rauh, J. J., Grauso, M., Sattelle, D. B. (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 22, 573–580.CrossRefGoogle Scholar
  19. 19.
    Morakchi, S., Maiza, A., Farine, P., Aribi, N., Soltani, N. (2005) Effects of a neonicotinoid insecticide (acetamiprid) on acetylcholinesterase activity and cuticular hydrocarbons profil in German cockroaches. Commun. Agric. Appl. Biol. Sci. 70, 843–848.PubMedGoogle Scholar
  20. 20.
    Palmer, M. J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G. A., Connolly, C. N. (2013) Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat. Commun. 4.Google Scholar
  21. 21.
    Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R., Vanengelsdorp, D. (2013) Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae. PLoS One 8.Google Scholar
  22. 22.
    Reetz, J. E., Zuhlke, S., Spiteller, M., Wallner, K. (2011) Neonicotinoid insecticides translocated in guttated droplets of seed-treated maize and wheat: a threat to honeybees? Apidologi. 42, 596–606.CrossRefGoogle Scholar
  23. 23.
    Starner, K., Goh, K. S. (2012) Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull. Environ. Contam. Toxicol. 88, 316–321.CrossRefGoogle Scholar
  24. 24.
    Tapparo, A., Giorio, C., Marzaro, M., Marton, D., Solda, L., Girolami, V. (2011) Rapid analysis of neonicotinoid insecticides in guttation drops of corn seedlings obtained from coated seeds. J. Environ. Monit. 13, 1564–1568.CrossRefGoogle Scholar
  25. 25.
    Tomizawa, M., Casida, J. E. (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol. 48, 339–364.CrossRefGoogle Scholar
  26. 26.
    Tomizawa, M., Casida, J. E. (2005) Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–267.CrossRefGoogle Scholar
  27. 27.
    van der Sluijs, J. P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J. M., Belzunces, L. P. (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr. Opin. Env. Sust. 5, 293–305.CrossRefGoogle Scholar
  28. 28.
    van Engelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y. P., Underwood, R., Tarpy, D. R., Pettis, J. S. (2009) Colony Collapse Disorder: A Descriptive Study. PLoS One 4.Google Scholar
  29. 29.
    Williamson, S. M., Wright, G. A. (2013) Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 216, 1799–1807.CrossRefGoogle Scholar
  30. 30.
    Wu, J. Y., Smart, M. D., Anelli, C. M., Sheppard, W. S. (2012) Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J. Invert. Pathol. 109, 326–329.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • János Győri
    • 1
  • Anna Farkas
    • 1
  • Oksana Stolyar
    • 2
  • András Székács
    • 3
  • Mária Mörtl
    • 3
  • Ágnes Vehovszky
    • 1
    Email author
  1. 1.Department of Experimental Zoology, MTA Centre for Ecological ResearchBalaton Limnological InstituteTihanyHungary
  2. 2.Research Laboratory of Comparative Biochemistry and Molecular BiologyTernopil National Pedagogical UniversityTernopilUkraine
  3. 3.Department of Environmental Analysis, Agro-Environmental Research InstituteNational Agricultural Research and Innovation CentreBudapestHungary

Personalised recommendations