Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 3, pp 255–266 | Cite as

Optimised Selenium Enrichment of Artemia sp. Feed to Improve Red Drum (Sciaenops Ocellatus) Larvae Rearing

  • Péter JuhászEmail author
  • Szvetlana Lengyel
  • Zsolt Udvari
  • Alex Nagy Sándor
  • László Stündl
Article

Abstract

Selenium is an essential microelement for the normal functioning of life processes. Moreover, it is a component of enzymes with antioxidant effects. However, it has the smallest window of any micronutrient between requirement and toxicity. Selenium is a regularly used element in fish feeds; moreover, enriching zooplankton with selenium to rear larvae is also a well-known technology. It is accepted that the most common starter foods of fish larvae, natural rotifers contain the smallest dosage of selenium, but providing selenium enriched Artemia sp. instead could increase survival and growth rate of fish. However, no such references are available for the red drum (Sciaenops ocellatus) larvae. Therefore, in this study, Artemia sp. was enriched with nano-selenium of verified low toxicity and easy availability in 5 treatments (1, 5, 10, 50, 100 mg/l Se), and then, fish larvae were fed with four of these enriched Artemia stocks (1, 5, 10, 50 mg/l Se) and a control group. At the end of the 9-day-long experiment, survival rate (S) and growth parameters (SL, W, K-factor, SGR) of fish larvae were calculated as well as their selenium retention and glutathione peroxidase enzyme activity were analysed. It was revealed that a moderate level of selenium enrichment (∼4 mg/kg dry matter) of Artemia sp. positively influences the rearing efficiency (i.e. survival and growth) of fish larvae, but higher dosages of selenium could cause adverse effects.

Keywords

Nano elemental selenium red drum Artemia sp. enrichment optimum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, J. G., Cowey, C. B. (1989) Digestibility and bioavailability of dietary selenium from fishmeal, selenite, selenomethionine and selenocystine in Atlantic salmon (Salmo salar). Aquaculture 81, 61–68.Google Scholar
  2. 2.
    Bell, J. G., Cowey, C. B., Adron, J. W., Pirie, B. J. S. (1987) Some effects of selenium deficiency on enzyme activities and indices of tissue peroxidation in Atlantic salmon parr (Salmo salar). Aquaculture 65, 43–54.Google Scholar
  3. 3.
    Brigelius-Flohe, R. (1999) Tissue-specific functions of individual glutathione peroxidases. J. Free Radic. Biol. Med. 27, 951–965.Google Scholar
  4. 4.
    Burk, R. F. (2002) Selenium an antioxidant nutrient. Nutr. in Clinical Care 5, 75–79.Google Scholar
  5. 5.
    Chassaigne, H., Chéry, C. C., Bordin, G., Rodriguez, A. R. (2002) Development of new analytical methods for selenium speciation in selenium-enriched yeast material. J. Chromatogr. A. 976, 409–422.PubMedGoogle Scholar
  6. 6.
    Davis, D. A., Gatlin III, D. M. (1996) Dietary mineral requirements of fish and marine crustaceans. Rev. Fish. Sci. 4, 75–99.Google Scholar
  7. 7.
    Estevez, A., Kanazawa, A. (1996) Fatty acid composition of neural tissues of normally pigmented and unpigmented juveniles of Japanese flounder using rotifer and Artemia enriched in n y 3 HUFA. Fisheries Sci. 62, 88–93.Google Scholar
  8. 8.
    Flohé, L., Gunzler, W. A., Schock, H. H. (1973) Glutathione peroxidase: A selenoenzyme. FEBS Lett 32, 132.PubMedGoogle Scholar
  9. 9.
    Gatlin III, D. M., Poe, W. E., Wilson, R. P. (1986) Effects of singular and combined dietary deficiencies of selenium and vitamin E on fingerling channel catfish (Ictalurus punctatus). J. Nutr. 116, 1061–1067.PubMedGoogle Scholar
  10. 10.
    Gatlin III, D. M., Wilson, R. P. (1984) Dietary selenium requirement of fingerling channel catfish. J. Nutr. 114, 627–633.Google Scholar
  11. 11.
    Hafezieh, M., Salleh Kamarudin, M., Roos Bin Saad, C., Kamal Abd Sattar, M., Agh, N., Hosseinpour, H. (2009) Effect of enriched artemia urmiana on growth, survival and composition of larval persian sturgeon. Turk. J. Fish. Aquat. Sc. 9, 201–207.Google Scholar
  12. 12.
    Hamre, K., Mollan, T. A., Sæle, Ø., Erstad, B. (2008) Rotifers enriched with iodine and selenium increase survival in Atlantic cod (Gadus morhua) larvae. Aquaculture 284, 190–195.Google Scholar
  13. 13.
    Hamre, K., Opstad, I., Espe, M., Solbakken, J., Hemre, G. I., Pittman, K. (2002) Nutrient composition and metamorphosis success of Atlantic halibut (Hippoglossus hippoglossus, L.) larvae fed natural zooplankton or Artemia. Aquaculture Nutr. 8, 139–148.Google Scholar
  14. 14.
    Hilton, J. W., Hodson, P. V., Slinger, S. J. (1980) The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J. Nutr. 110, 2527–2535.PubMedGoogle Scholar
  15. 15.
    Huang, B., Zhang, J., Hou, J., Chen, C. (2003) Free radical scavenging efficiency of nano-Se in vitro. J. Free Radic. Biol. Med. 35, 805–813.Google Scholar
  16. 16.
    Jaramillo, F., Peng, L., Gatlin, D. (2009) Selenium nutrition of hybrid striped bass (Morone chrysops × M. saxatilis) bioavailability, toxicity and interaction with vitamin E. Aquaculture Nutr. 15, 160–165.Google Scholar
  17. 17.
    Johansson, L., Gafvelin, G., Arnér, E. S. J. (2005) Selenocysteine in proteins‒properties and biotechnological use. BBA General Subjects. 1726, 1–13.PubMedGoogle Scholar
  18. 18.
    Kamaszewski, M., Ostaszewska, T., Prusińska, M., Kolman, R., Chojnacki, M., Zabytyvskij, J., Jankowska, B., Kasprzak, R. (2014) Effects of Artemia sp. enrichment with essential fatty acids on functional and morphological aspects of the digestive system i. Acipenser gueldenstaedtii Larvae. Turk. J. Fish. Aquat. Sc. 14, 929–938.Google Scholar
  19. 19.
    Kim, S.-K., Kim, K.-G., Kim, K.-D., Kim, K.-W., Son, M.-H., Rust, M., Johnson, R. (2014) Effect of dietary taurine levels on the conjugated bile acid composition and growth of juvenile Korean rockfish Sebastes schlegeli (Hilgendorf) Aquacult. Res. 46: 2768–2775.Google Scholar
  20. 20.
    Kohrle, J. (2004) Selenium in biology and medicine‒further progress and increasing interest. J. Trace Elem. Med. Biol. 18, 61–63.Google Scholar
  21. 21.
    Kovács, B., Prokisch, J., Győri, Z., Kovács, A. B., Palencsar, A. (2000) Analytical methods and quality assurance: studies on soil sample preparation for inductively coupled plasma atomic emission spectrometry analysis. Commun. Soil Sci. Plan. 31, 1949–1963.Google Scholar
  22. 22.
    Leger, P., Bengston, D. A., Simpson, K. L., Sorgeloos, P. (1986) The use and nutritional value of Artemia as a food source. In: Barnes, M. (ed.). Oceanogr. Mar. Biol. Annual Reviews Vol 24. Aberdeen Univ. Press, Aberdeen, Scotland. pp. 521–623.Google Scholar
  23. 23.
    Lemly, A. D. (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat. Toxicol. 57, 39–49.PubMedGoogle Scholar
  24. 24.
    Lin, Y. H., Shiau, S. Y. (2005) Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 250, 356–363.Google Scholar
  25. 25.
    Lorentzen, M., Maage, A., Julshamn, K. (1994) Effects of dietary selenite or selenomethionine on tissue selenium levels of Atlantic salmon (Salmo salar). Aquaculture 121, 359–367.Google Scholar
  26. 26.
    Maier, K. J., Knight, A. W. (1994) Ecotoxicology of selenium in freshwater system. In: Ware, G. W. (ed.). Rev. Environ. Contam. Toxicol. 134, Springer-Verlag, New York, pp. 31–48.PubMedGoogle Scholar
  27. 27.
    McAdam, P. A., Levander, O. A. (1987): Chronic toxicity and retention of dietary selenium fed to rats and D- or L selenomethionine, selenite or selenate. Nutr. Res. 7, 601–610.Google Scholar
  28. 28.
    Naess, T., Germain-Henry, M., Naas, K. E. (1995) First feeding of Atlantic halibut (Hippoglossus hippoglossus) using different combinations of Artemia and wild zooplankton. Aquaculture 130, 235–250.Google Scholar
  29. 29.
    Nguyen, V. T., Satoh, S., Haga, Y., Fushimi, H., Kotani, T. (2008) Effect of zinc and manganese supplementation in Artemia on growth and vertebral deformity in red sea bream (Pagrus major) larvae. Aquaculture 7, 184–192.Google Scholar
  30. 30.
    NRC (1993) Nutrient Requirements of Fish. National Academy Press, Washington, DC, pp. 62–63.Google Scholar
  31. 31.
    Penglase, S., Nordgreen, A., Meeren, T. van der, Olsvik, P. A., Sæle, Ø., Sweetman, J. W., Baeverfjord, G., Helland, S., Hamre, K. (2010) Increasing the level of selenium in rotifers (Brachionus plicatilis ‘Cayman’) enhances the mRNA expression and activity of glutathione peroxidase in cod (Gadus morhua L.) larvae. Aquaculture 306, 259–269.Google Scholar
  32. 32.
    Polatajko, A., Jakubowski, N., Szpunar, J. (2006) State of the art report of selenium speciation in biological samples. J. Anal. At. Spectrom. 21, 639–654.Google Scholar
  33. 33.
    Ribeiro, A. R. A., Ribeiro, L., Dinis, M. T., Moren, M. (2011) Protocol to enrich rotifers (Brachionus plicatilis) with iodine and selenium. Aquacult. Res. 42, 1737–1740.Google Scholar
  34. 34.
    Ribeiro, A. R. A., Ribeiro, L., Sæle, Ø., Dinis, M. T., Moren, M. (2012) Iodine and selenium supplementation increased survival and changed thyroid hormone status in Senegalese sole (Solea senegalensis) larvae reared in a recirculation system. Fish Physiol. Biochem. 38, 725–734.PubMedGoogle Scholar
  35. 35.
    Rider, S. A., Davies, S. J., Jha, A. N., Clough, R., Sweetman, J. W. (2010) Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal based rainbow trout (Oncorhynchus mykiss) diet. J. Anim. Physiol. Anim. Nutr. 94, 99–110Google Scholar
  36. 36.
    Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., Hoekstra, W. G. (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 585–590.Google Scholar
  37. 37.
    Sedlak, J., Lindsay, R. H. (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 25, 192–205.Google Scholar
  38. 38.
    Suhajda, Á., Hegóczki, J., Janzsó, B., Pais, I., Vereczkey, G. (2000) Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J. Trace Elem. Med. Biol. 14, 43–47.PubMedGoogle Scholar
  39. 39.
    Wakeman, J. M., Ramsey, P. R. (1985) A survey of population characteristic for red drum and spotted sea trout in Louisiana. Gulf Res. Ref. 8, 1–8.Google Scholar
  40. 40.
    Wang, C., Lovell, R. T. (1997) Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture 152, 223–234.Google Scholar
  41. 41.
    Wang, H., Zhang, J., Yu, H. (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic. Biol. Med. 42, 1524–1533.PubMedGoogle Scholar
  42. 42.
    Zeitoun, I. H., Ullrey, D. E., Magee, W. T. (1976) Quantifying nutrient requirements of fish. J. Fish. Res. Board. Can. 33, 167–172.Google Scholar
  43. 43.
    Zhang, J., Wang, H., Yan, X., Zhang, L. (2005) Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sci. 76, 1099–1109.PubMedGoogle Scholar
  44. 44.
    Zheng, F., Takeuchi, T., Yoseda, K., Kobayashi, M., Hirokawa, J., Watanabe, T. (1996) Requirement of larval cod for arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid using enriched Artemia nauplii. Nippon Suisan Gakk. 62, 669–676.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Péter Juhász
    • 1
    Email author
  • Szvetlana Lengyel
    • 2
  • Zsolt Udvari
    • 3
  • Alex Nagy Sándor
    • 4
  • László Stündl
    • 1
  1. 1.Faculty of Agricultural and Food Sciences and Environmental Management, Department of Animal HusbandryUniversity of DebrecenDebrecenHungary
  2. 2.Network of Aquaculture Centres in Central and Eastern EuropeSzarvasHungary
  3. 3.Ministry of AgricultureBudapestHungary
  4. 4.Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary

Personalised recommendations