In Vitro Activity of Calcium Channel Blockers in Combination with Conventional Antifungal Agents Against Clinically Important Filamentous Fungi

Abstract

Despite the current therapeutic options, filamentous fungal infections are associated with high mortality rate especially in immunocompromised patients. In order to find a new potential therapeutic approach, the in vitro inhibitory effect of two antiarrhythmic agents, diltiazem and verapamil hydrochloride were tested against different clinical isolates of ascomycetous and mucoralean filamentous fungi. The in vitro combinations of these non-antifungal drugs with azole and polyene antifungal agents were also examined. Susceptibility tests were carried out using the broth microdilution method according to the instructions of the Clinical and Laboratory Standards Institute document M38-A2. Checkerboard microdilution assay was used to assess the interactions between antifungal and non-antifungal drugs. Compared to antifungal agents, diltiazem and verapamil hydrochloride exerted a relatively low antifungal activity with high minimal inhibitory concentration values (853–2731 μg/ml). Although in combination they could increase the antifungal activity of amphotericin B, itraconazole and voriconazole. Indifferent and synergistic interactions were registered in 33 and 17 cases, respectively. Antagonistic interactions were not revealed between the investigated compounds. However, the observed high MICs suggest that these agents could not be considered as alternative systemic antifungal agents.

References

  1. 1.

    Afeltra, J., Verweij, P. E. (2003) Antifungal activity of non-antifungal drugs. Eur. J. Clin. Microbiol. Infect. Dis. 22, 397–407.

    CAS  Article  Google Scholar 

  2. 2.

    Afeltra, J., Vitale, R. G., Mouton, J. W., Verweij, P. E. (2004) Potent synergistic in vitro interaction between nonantimicrobial membrane-active compounds and itraconazole against clinical isolates of Aspergillus fumigatus resistant to itraconazole. Antimicrob. Agents Chemother. 48, 1335–1343.

    CAS  Article  Google Scholar 

  3. 3.

    Ashbee, H. R., Barnes, R. A., Johnson, E. M., Richardson, M. D., Gorton, R., Hope, W. W. (2014) Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 69, 1162–1176.

    CAS  Article  Google Scholar 

  4. 4.

    Bulatova, N. R., Darwish, R. M. (2008) Effect of chemosensitizers on minimum inhibitory concentrations of fluconazole in Candida albicans. Med. Princ. Pract. 17, 117–121.

    Article  Google Scholar 

  5. 5.

    CLSI (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved Standard–Second Edition. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Wayne.

    Google Scholar 

  6. 6.

    Crabol, Y., Lortholary, O. (2014) Invasive mold infections in solid organ transplant recipients. Scientifica 2014, 821969.

    Article  Google Scholar 

  7. 7.

    Denning, D. W., Bromley, M. J. (2015) How to bolster the antifungal pipeline. Science 347, 1414–1416.

    CAS  Article  Google Scholar 

  8. 8.

    Eliopoulos, G. M., Moellering, R. C. (1996) Antimicrobial combinations. In: Lorian, V. (ed.). Antibiotics In Laboratory Medicine. 4th Edition. The Williams and Wilkins Co., Baltimore, pp. 330–396.

    Google Scholar 

  9. 9.

    GAFFI–Global Action Fund for Fungal Infections (2015) Report on activities for 2015. Available from: https://doi.org/www.gaffi.org/official-documents-and-reports/. Accessed 21 July 2016.

    Google Scholar 

  10. 10.

    Hamill, R. J. (2013) Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73, 919–934.

    CAS  Article  Google Scholar 

  11. 11.

    Johnson, M. D., MacDougall, C., Ostrosky-Zeichner, L., Perfect, J. R., Rex, J. H. (2004) Combination antifungal therapy. Antimicrob. Agents Chemother. 48, 693–715.

    CAS  Article  Google Scholar 

  12. 12.

    Khalaf, R. M., Jabir, H. B., Abbas, F. N. (2012) Investigation of the antifungal activity of some nonantifungal drugs in clinical isolates of otomycosis. J. Thi-Qar. Sci. 3, 31–39.

    Google Scholar 

  13. 13.

    Köppel, C., Wagemann, A. (1991) Plasma level monitoring of D,L-verapamil and three of its metabolites by reversed-phase high-performance liquid chromatography. J. Chromatogr. 570, 229–234.

    Article  Google Scholar 

  14. 14.

    Krajewska-Kułak, E., Niczyporuk, W. (1993) Effects of the combination of ketoconazole and calcium channel antagonists against Candida albicans in vitro. Arzneimittelforschung 43, 782–783.

    PubMed  Google Scholar 

  15. 15.

    Levy, R., Dana, R., Gold, B., Alkan, M., Schlaeffer, F. (1991) Influence of calcium channel blockers on polymorphonuclear and monocyte bactericidal and fungicidal activity. Isr. J. Med. Sci. 27, 301–306.

    CAS  PubMed  Google Scholar 

  16. 16.

    Lewis, R. E. (2008) What is the “therapeutic range” for voriconazole. Clin. Infect. Dis. 46, 212–214.

    CAS  Article  Google Scholar 

  17. 17.

    Liu, S., Yue, L., Gu, W., Li, X., Zhang, L., Sun, S. (2016) Synergistic effect of fluconazole and calcium channel blockers against resistant Candida albicans. PLoS ONE 11, e0150859.

  18. 18.

    Low, C.-Y., Rotstein, C. (2011) Emerging fungal infections in immunocompromised patients. F1000 Med. Rep. 3, 14.

    Article  Google Scholar 

  19. 19.

    Mendoza, L., Vilela, R., Voelz, K., Ibrahim, A. S., Voigt, K., Lee, S. C. (2014) Human fungal pathogens of Mucorales and Entomophthorales. Cold Spring Harb. Perspect. Med. 5, a019562.

    Article  Google Scholar 

  20. 20.

    Methaneethorn, J., Chamnansua, M., Kaewdang, N., Lohitnavy, M. (2014) A pharmacokinetic drug–drug interaction model of simvastatin and verapamil in humans. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 5711–5714.

    PubMed  Google Scholar 

  21. 21.

    Monteiro, N., Silvestre, J., Gonçalves-Pereira, J., Tapadinhas, C., Mendes, V., Póvoa, P. (2013) Severe diltiazem poisoning treated with hyperinsulinaemia-euglycaemia and lipid emulsion. Case Rep. Crit. Care 2013, 138959.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Odds, F. C. (2003) Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52, 1.

    CAS  Article  Google Scholar 

  23. 23.

    Pina-Vaz, C., Rodrigues, A. G., Costa-de-Oliveira, S., Ricardo, E., Mårdh, P. A. (2005) Potent synergic effect between ibuprofen and azoles of Candida resulting from blockade of efflux pumps as determined by FUN-1 staining and flow cytometry. J. Antimicrob. Chemother. 56, 678–685.

    CAS  Article  Google Scholar 

  24. 24.

    Praveen, R. J., Subramanyam, C. (1999) Requirement of Ca2+ for aflatoxin production: inhibitory effect of Ca2+ channel blockers on aflatoxin production by Aspergillus parasiticus NRRL 2999. Lett. Appl. Microbiol. 28, 85–88.

    Article  Google Scholar 

  25. 25.

    Richards, D., Aronson, J., Reynolds, D. J., Coleman, J. (2011) Oxford Handbook of Practical Drug Therapy. 2nd Edition. Oxford University Press, Oxford.

    Google Scholar 

  26. 26.

    Roilides, E., Dotis, J., Katragkou, A. (2007) Fusarium and Scedosporium: emerging fungal pathogens. In: Kavanagh, K. (ed.). New Insights in Medical Mycology. Springer, Dordrecht, pp. 267–285.

    Google Scholar 

  27. 27.

    Yu, Q., Ding, X., Xu, N., Cheng, X., Qian, K., Zhang, B., Xing, L., Li, M. (2013) In vitro activity of verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms. Int. J. Antimicrob. Agents 41, 179–182.

    CAS  Article  Google Scholar 

  28. 28.

    Yu, Q., Ding, X., Zhang, B., Xu, N., Jia, C., Mao, J., Zhang, B., Xing, L., Li, M. (2014) Inhibitory effect of verapamil on Candida albicans hyphal development, adhesion and gastrointestinal colonization. FEMS Yeast Res. 14, 633–641.

    CAS  Article  Google Scholar 

  29. 29.

    Yu, Q., Xiao, C., Zhang, K., Jia, C., Ding, X., Zhang, B., Wang, Y., Li, M. (2014) The calcium channel blocker verapamil inhibits oxidative stress response in Candida albicans. Mycopathologia 177, 167–177.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to László Galgóczy.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Homa, M., Hegedűs, K., Fülöp, Á. et al. In Vitro Activity of Calcium Channel Blockers in Combination with Conventional Antifungal Agents Against Clinically Important Filamentous Fungi. BIOLOGIA FUTURA 68, 334–344 (2017). https://doi.org/10.1556/018.68.2017.3.10

Download citation

Keywords

  • Diltiazem hydrochloride
  • verapamil hydrochloride
  • antifungal activity
  • drug combinations
  • synergistic interaction