Acta Biologica Hungarica

, Volume 68, Issue 3, pp 237–247 | Cite as

Changes in Expression of Neuropeptides and Their Receptors in the Hypothalamus and Gastrointestinal Tract of Calorie Restricted Hens

  • Ádám Simon
  • János Oláh
  • István Komlósi
  • András Jávor
  • József Németh
  • Zoltán Szilvásy
  • Dóra Reglődi
  • Andrea Tamás
  • Levente CzeglédiEmail author


The list of orexigenic and anorexigenic peptides, those are known to alter feed intake, is continuously growing. However, most of them are studied in mammalian species. We aimed to investigate plasma level and mRNA expression of the pituitary adenylate cyclase-activating polypeptide (PACAP), gene expression of its receptor (PAC1), furthermore the gene expression of galanin (GAL), neuromedin U (NMU), and its two receptors (NMUR1 and NMUR2) in the hypothalamus, proventriculus, and jejunum of hens exposed to 40% calorie restriction. Feed restriction resulted in a 88% increase in mRNA and a 27% increase in peptide level of PACAP in proventriculus measured with qPCR and RIA, respectively. Increases were found in the gene expression of PAC1 (49%) and NMUR1 (63%) in the hypothalamus. Higher expressions of peptide encoding genes (76% for PACAP, 41% for NMU, 301% for NMUR1 and 308% for GAL, P < 0.05) were recorded in the jejunum of hens exposed to restricted nutrition. The results indicate that PACAP level responds to calorie restriction in the proventriculus and jejunum, but not in the hypothalamus and plasma.


Calorie restriction GAL NMU PAC1 PACAP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, C. L., Jensen, J. L., Ørntoft, T. F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250.CrossRefPubMedGoogle Scholar
  2. 2.
    Ando, R., Bungo, T., Kawakami, S. I., Shimojo, M., Masuda, Y., Furuse, M. (2000) Intracerebroventricular injection of mammalian motilin, melanin-concentrating hormone or galanin does not stimulate food intake in neonatal chicks. Br. Poult. Sci. 41, 508–511.CrossRefPubMedGoogle Scholar
  3. 3.
    Borzsei, R., Mark, L., Tamas, A., Bagoly, T., Bay, C., Csanaky, K., Banki, E., Kiss, P., Vaczy, A., Horvath, G., Nemeth, J., Szauer, E., Helyes, Z., Reglodi, D. (2009) Presence of pituitary adenylate cyclase activating polypeptide-38 in human plasma and milk. Eur. J. Endocrinol. 160, 561–565.CrossRefPubMedGoogle Scholar
  4. 4.
    Boswell, T. (2005) Regulation of energy balance in birds by the neuroendocrine hypothalamus. The Journal of Poultry Science. 42, 161–181.CrossRefGoogle Scholar
  5. 5.
    Cai, G., Mo, C., Huang, L., Li, J., Wang, Y. (2015) Characterization of the Two CART Genes (CART1 and CART2) in Chickens (Gallus gallus). PLoS One. 10, e0127107.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Clench, M., Mathias, J. (1995) Motility responses to fasting in the gastrointestinal-tract of 3 avian species. Condor. 97, 1041–1047.CrossRefGoogle Scholar
  7. 7.
    Czegledi, L., Tamas, A., Borzsei, R., Bagoly, T., Kiss, P., Horvath, G., Brubel, R., Nemeth, J., Szalontai, B., Szabadfi, K. (2011) Presence of pituitary adenylate cyclase-activating polypeptide (PACAP) in the plasma and milk of ruminant animals. Gen. Comp. Endocrinol. 172, 115–119.CrossRefPubMedGoogle Scholar
  8. 8.
    DeGolier, T. F., Nordell, J. N., Pust, M. H., Duke, G. E. (1999) Effect of galanin on isolated strips of smooth muscle from the gastrointestinal tract of chickens. J. Exp. Zool. 283, 463–468.CrossRefPubMedGoogle Scholar
  9. 9.
    Ding, B., Lenzi, C., Pirone, A. (2014) Immunohistochemical study on glucagon-like peptide-1 (GLP- 1) and pituitary adenylate cyclase activating peptide (PACAP) in the small intestine of muscovy duck during the prehatching and posthatching periods. J. Poult. Sci. 51, 35–41.CrossRefGoogle Scholar
  10. 10.
    Dogrukol-Ak, D., Tore, F., Tuncel, N. (2004) Passage of VIP/PACAP/secretin family across the blood-brain barrier: therapeutic effects. Curr. Pharm. Des. 10, 1325–1340.CrossRefPubMedGoogle Scholar
  11. 11.
    Domin, J., Benito-Orfila, M. A., Nandha, K. A., Aitken, A., Bloom, S. R. (1992) The purification and sequence analysis of an avian neuromedin U. Regul. Pept. 41, 1–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Furuse, M., Matsumoto, M., Mori, R., Sugahara, K., Kano, K., Hasegawa, S. (1997) Influence of fasting and neuropeptide Y on the suppressive food intake induced by intracerebroventricular injection of glucagon-like peptide-1 in the neonatal chick. Brain Res. 764, 289–292.CrossRefPubMedGoogle Scholar
  13. 13.
    Hagen, C. J., Newmyer, B. A., Webster, R. I., Gilbert, E. R., Siegel, P. B., Tachibana, T., Cline, M. A. (2013) Stimulation of food intake after central galanin is associated with arcuate nucleus activation and does not differ between genetically selected low and high body weight lines of chickens. Neuropeptides 47, 281–285.CrossRefPubMedGoogle Scholar
  14. 14.
    Helyes, Z., Pozsgai, G., Börzsei, R., Németh, J., Bagoly, T., Márk, L., Pintér, E., Tóth, G., Elekes, K., Szolcsányi, J. (2007) Inhibitory effect of PACAP-38 on acute neurogenic and non-neurogenic inflammatory processes in the rat. Peptides 28, 1847–1855.CrossRefPubMedGoogle Scholar
  15. 15.
    Hiramatsu, K., Yamasaki, A. (2009) Immunohistochemical study on the innervation of the chicken pancreas by pituitary adenylate cyclase-activating polypeptides (PACAPs)-containing nerves. J. Poult. Sci. 46, 234–239.CrossRefGoogle Scholar
  16. 16.
    Honda, K., Saneyasu, T., Okuda, M., Uemura, T., Kamisoyama, H. (2015) Glucagon and neuromedin U suppress food intake in broiler chicks. J. Poult. Sci. 53, 268–273.CrossRefGoogle Scholar
  17. 17.
    Howard, A. D., Wang, R. P., Pong, S. S. (2000) Identification of receptors for neuromedin U and its role in feeding. Nature 406, 70–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Jakab, B., Reglődi, D., Józsa, R., Hollósy, T., Tamás, A., Lubics, A., Lengvári, I., Oroszi, G., Szilvássy, Z., Szolcsányi, J., Németh, J. (2004) Distribution of PACAP-38 in the central nervous system of various species determined by a novel radioimmunoassay. J. Biochem. Biophys. Methods 61, 189–198.CrossRefPubMedGoogle Scholar
  19. 19.
    Jozsa, R., Nemeth, J., Tamas, A., Hollosy, T., Lubics, A., Peter, S., Olah, A., Lengvari, I. Reglodi, D. (2005) Short-term fasting differentially affects PACAP and VIP levels in rats and chicken. Regul. Pept. 130, 166.Google Scholar
  20. 20.
    Jozsa, R., Nemeth, J., Tamas, A., Hollosy, T., Lubics, A., Jakab, B., Olah, A., Lengvari, I., Arimura, A., Reglödi, D. (2006) Short-term fasting differentially alters PACAP and VIP levels in the brains of rat and chicken. Ann. N. Y. Acad. Sci. 1070, 354–358.CrossRefPubMedGoogle Scholar
  21. 21.
    Juhasz, T., Helgadottir, S. L., Tamas, A., Reglodi, D., Zakany, R. (2015) PACAP and VIP signaling in chondrogenesis and osteogenesis. Peptides 66, 51–57.CrossRefPubMedGoogle Scholar
  22. 22.
    Kamisoyama, H., Honda, K., Saneyasu, T., Sugahara, K., Hasegawa, S. (2007) Central administration of neuromedin U suppresses food intake in chicks. Neurosci. Lett. 420, 1–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Kiss, P., Reglődi, D., Tamás, A., Lubics, A., Lengvári, I., Józsa, R., Somogyvári-Vigh, A., Szilvássy, Z., Németh, J. (2007) Changes of PACAP levels in the brain show gender differences following shortterm water and food deprivation. Gen. Comp. Endocrinol. 152, 225–230.CrossRefPubMedGoogle Scholar
  24. 24.
    Klein, S., Jurkevich, A., Grossmann, R. (2006) Sexually dimorphic immunoreactivity of galanin and colocalization with arginine vasotocin in the chicken brain (Gallus gallus domesticus). J. Comp. Neurol. 499, 828–839.CrossRefPubMedGoogle Scholar
  25. 25.
    Kuenzel, W. J., Masson, M. (1988) A stereotaxic atlas of the brain of the chick (Gallus domesticus), The John Hopkins University Press, Baltimore, MD.Google Scholar
  26. 26.
    Kumano, S., Matsumoto, H., Takatsu, Y., Noguchi, J., Kitada, C., Ohtaki, T. (2003) Changes in hypothalamic expression levels of galanin-like peptide in rat and mouse models support that it is a leptintarget peptide. Endocrinology 144, 2634–2643.CrossRefPubMedGoogle Scholar
  27. 27.
    Lam, S., Liu, Y., Liong, E., Tipoe, G., Fung, M. L. (2012) Upregulation of pituitary adenylate cyclase activating polypeptide and its receptor expression in the rat carotid body in chronic and intermittent hypoxia. Adv. Exp. Med. Biol. 758, 301–306.CrossRefPubMedGoogle Scholar
  28. 28.
    Luts, A., Uddman, R., Sundler, F. (1989) Neuronal galanin is widely distributed in the chicken respiratory tract and coexists with multiple neuropeptides. Cell Tissue Res. 256, 95–103.CrossRefPubMedGoogle Scholar
  29. 29.
    Matsuda, K., Maruyama, K., Nakamachi, T., Miura, T., Shioda, S. (2006) Effects of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide on food intake and locomotor activity in the goldfish, Carassius auratus. Ann. N. Y. Acad. Sci. 1070, 417–421.CrossRefPubMedGoogle Scholar
  30. 30.
    Monir, M., Hiramatsu, K., Yamasaki, A., Nishimura, K., Watanabe, T. (2014) The influence of restricted feeding on glucagon-like peptide-1 (GLP-1)-containing cells in the chicken small intestine. Anat. Histol. Embryol. 43, 153–158.CrossRefPubMedGoogle Scholar
  31. 31.
    Oclon, E., Pietras, M. (2011) Peripheral ghrelin inhibits feed intake through hypothalamo-pituitaryadrenal axis-dependent mechanism in chicken. J. Anim. Feed Sci. 20, 118–130.CrossRefGoogle Scholar
  32. 32.
    Okimura, K., Sakura, N., Kurosawa, K., Hashimoto, T. (1992) Contractile activity of porcine neuromedin U-25 and various neuromedin U-related peptide fragments on isolated chicken crop smooth muscle. Chem. Pharm. Bull. 40, 1500–1503.CrossRefPubMedGoogle Scholar
  33. 33.
    Ozawa, M., Aono, M., Moriga, M. (1999) Central effects of pituitary adenylate cyclase activating polypeptide (PACAP) on gastric motility and emptying in rats. Dig. Dis. Sci. 44, 735–743.CrossRefPubMedGoogle Scholar
  34. 34.
    Peeters, K., Gerets, H. H., Princen, K., Vandesande, F. (1999) Molecular cloning and expression of a chicken pituitary adenylate cyclase-activating polypeptide receptor. Mol. Brain Res. 71, 244–255.CrossRefPubMedGoogle Scholar
  35. 35.
    Peeters, K., Gerets, H. H., Arckens, L., Vandesande, F. (2000) Distribution of pituitary adenylate cyclase-activating polypeptide and pituitary adenylate cyclase-activating polypeptide type I receptor mRNA in the chicken brain. J. Comp. Neurol. 423, 66–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Pirone, A., Baoan, D., Piano, I., Della Santina, L., Baglini, A., Lenzi, C. (2011) Pituitary adenylate cyclase-activating peptide (PACAP) immunoreactivity distribution in the small intestine of the adult New Hampshire chicken. Acta Histochem. 113, 477–483.CrossRefPubMedGoogle Scholar
  37. 37.
    Racz, B., Horvath, G., Reglodi, D., Gasz, B., Kiss, P., Gallyas, F., Sumegi, B., Toth, G., Nemeth, A., Lubics, A. (2010) PACAP ameliorates oxidative stress in the chicken inner ear: an in vitro study. Regul. Pept. 160, 91–98.CrossRefPubMedGoogle Scholar
  38. 38.
    Salvi, E., Vaccaro, R., Renda, T. G. (1999) Ontogeny of galanin-immunoreactive elements in the intrinsic nervous system of the chicken gut. Anat. Rec. 254, 28–38.CrossRefPubMedGoogle Scholar
  39. 39.
    Tachibana, T., Saito, S., Tomonaga, S., Takagi, T., Saito, E., Boswell, T., Furuse, M. (2003) Intracerebroventricular injection of vasoactive intestinal peptide and pituitary adenylate cyclaseactivating polypeptide inhibits feeding in chicks. Neurosci. Lett. 339, 203–206.CrossRefPubMedGoogle Scholar
  40. 40.
    Tachibana, T., Mori, M., Khan, M. S. I., Ueda, H., Sugahara, K., Hiramatsu, K. (2008) Central administration of galanin stimulates feeding behavior in chicks. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 151, 637–640.CrossRefPubMedGoogle Scholar
  41. 41.
    Takeuchi, S., Teshigawara, K., Takahashi, S. (2000) Widespread expression of Agouti-related protein (AGRP) in the chicken: a possible involvement of AGRP in regulating peripheral melanocortin systems in the chicken. Biochim. Biophys. Acta-Mol. Cell Res. 1496, 261–269.CrossRefGoogle Scholar
  42. 42.
    Webster, A. B. (1995) Immediate and subsequent effects of a short fast on the behavior of laying hens. Appl. Anim. Behav. Sci. 45, 255–266.CrossRefGoogle Scholar
  43. 43.
    Yamamoto, I., Nakao, N., Kaiya, H., Miyazato, M., Tsushima, N., Arai, T., Tanaka, M. (2011) Two chicken neuromedin U receptors: Characterization of primary structure, biological activity and tissue distribution. Gen. Comp. Endocrinol. 174, 116–123.CrossRefPubMedGoogle Scholar
  44. 44.
    Yasuhara, T., Mizuno, K., Somogyvari-Vigh, A., Komaki, G., Arimura, A. (1992) Isolation and primary structure of chicken PACAP. Regul. Pept. 37, 326.Google Scholar
  45. 45.
    Yoshida, M., Aizawa, H., Takahashi, N., Shigyo, M., Hara, N. (2000) Pituitary adenylate cyclase activating peptide mediates inhibitory nonadrenergic noncholinergic relaxation. Eur. J. Pharmacol. 395, 77–83.CrossRefPubMedGoogle Scholar
  46. 46.
    Zentel, H., Nohr, D., Muller, S., Yanaihara, N., Weihe, E. (1990) Differential occurrence and distribution of galanin in adrenal nerve-fibers and medullary cells in rodent and avian species. Neurosci. Lett. 120, 167–170.CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Ádám Simon
    • 1
  • János Oláh
    • 1
  • István Komlósi
    • 1
  • András Jávor
    • 1
  • József Németh
    • 2
  • Zoltán Szilvásy
    • 2
  • Dóra Reglődi
    • 3
  • Andrea Tamás
    • 3
  • Levente Czeglédi
    • 1
    Email author
  1. 1.Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
  2. 2.Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of DebrecenDebrecenHungary
  3. 3.Department of AnatomyUniversity of Pécs Medical SchoolPécsHungary

Personalised recommendations