Acta Biologica Hungarica

, Volume 67, Issue 4, pp 431–441 | Cite as

Peptaibol Profiles of Iranian Trichoderma Isolates

  • Parisa Rahimi Tamandegani
  • Doustmorad ZafariEmail author
  • Tamás Marik
  • András Szekeres
  • Csaba Vágvölgyi
  • László KredicsEmail author


Five Iranian Trichoderma isolates from species T. viride, T. viridescens, T. asperellum, T. longibrachiatum and T. citrinoviride–selected from the Fungal Collection of the Bu Ali Sina University, Hamedan, Iran–were investigated for their peptaibol production. All examined isolates showed remarkable antibacterial activities during the screening of their extracts for peptaibol content with a Micrococcus luteus test culture. HPLC-ESI-IT MS was used for identification and elucidation of the amino acid sequences of peptaibols. The detected peptaibol compounds contain 20 or 18 amino acid residues and belong to the trichobrachin and trichotoxin groups of peptaibols, respectively. T. longibrachiatum and T. citrinoviride produced trichobrachins, while trichotoxins could be detected in T. viride, T. viridescens and T. asperellum. Out of 37 sequences detetermined, 26 proved to be new, yet undescribed compounds, while others were identified as previously reported trichotoxins (trichotoxin A-50s and T5D2) and trichobrachins (longibrachins AI, AII, AIII, BII and BIII). Compounds within the two groups of detected peptaibols differed from each other only by a single or just a few amino acid changes.


Trichoderma peptaibol antimicrobial activity high performance liquid chromatography electrospray ionization mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biemann, K. (1990) Sequencing of peptides by tandem mass spectrometry and high-energy collisioninduced dissociation. Methods Enzymol. 193, 455–479.CrossRefPubMedGoogle Scholar
  2. 2.
    Boheim, G., Irmscher, G., Jung, G. (1978) Trichotoxin A-40, a new membrane-exciting peptide. Part B. Voltage-dependent pore formation in bilayer lipid membranes and comparison with other alamethicin analogues. Biochim. Biophys. Acta -Biomem. 507, 485–506.CrossRefGoogle Scholar
  3. 3.
    Brito, J. P., Ramada, M. H., de Magalhães, M. T., Silva, L. P., Ulhoa, C. J. (2014) Peptaibols from Trichoderma asperellum TR356 strain isolated from Brazilian soil. SpringerPlus 3, 600.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brückner, H., König, W. A., Aydin, M, J. G. (1985) Trichotoxin A40. Purification by counter-current distribution and sequencing of isolated fragments. Biochim. Biophys. Acta 827, 51–62.CrossRefPubMedGoogle Scholar
  5. 5.
    Brückner, H., Przybylski, M. (1984) Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by high-performance liquid chromatography with field desorption and fast atom bombardment mass spectrometry. J. Chromatogr. 296, 263–275.CrossRefGoogle Scholar
  6. 6.
    Chiang, Y. M., Lee, K. H., Sanchez, J. F., Keller, N. P., Wang, C. C. (2009) Unlocking fungal cryptic natural products. Nat. Prod. Commun. 4, 1505–1510.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Chugh, J. K., Wallace, B. A. (2001) Peptaibols: models for ion channels. Biochem. Soc. Trans. 29, 565.CrossRefPubMedGoogle Scholar
  8. 8.
    Chutrakul, C., Alcocer, M., Bailey, K., Peberdy, J. F. (2008) The production and characterisation of trichotoxin peptaibols, by Trichoderma asperellum. Chem. Biodivers. 5, 1694–1706.CrossRefPubMedGoogle Scholar
  9. 9.
    Degenkolb, T., Brückner, H. (2008) Peptaibiomics: towards a myriad of bioactive peptides containing C(alpha)-dialkylamino acids? Chem. Biodivers. 5, 1817–1843.CrossRefPubMedGoogle Scholar
  10. 10.
    Grodnitskaya, I. D., Sorokin, N. D. (2006) Use of micromycetes Trichoderma for soil bioremediation in tree nurseries. Biol. Bull. 33, 400–403.CrossRefGoogle Scholar
  11. 11.
    Ha, T. (2010) Using Trichoderma species for biological control of plant pathogens in Vietnam. ISSAAS J. 16, 17–21.Google Scholar
  12. 12.
    Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., Lorito, M. (2004) Trichoderma species -opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2, 43–56.CrossRefPubMedGoogle Scholar
  13. 13.
    Hatvani, L., Manczinger, L., Vágvölgyi, C., Kredics, L. (2013) Trichoderma as a human pathogen. In: Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M., Schmoll, M. (eds) Trichoderma -Biology and Applications. CAB International, Wallingford, UK. pp. 292–313.CrossRefGoogle Scholar
  14. 14.
    Hou, C. T., Ciegler, A., Hesseltine, C. W. (1972) New mycotoxin, trichotoxin A, from Trichoderma viride isolated from southern leaf blight-infected corn. Appl. Microbiol. 23, 183–185.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kredics, L., Antal, Z., Manczinger, L., Nagy, E. (2001) Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Lett. Appl. Microbiol. 33, 112–116.CrossRefPubMedGoogle Scholar
  16. 16.
    Kredics, L., García Jimenez, L., Naeimi, S., Czifra, D., Urbán, P., Manczinger, L., Vágvölgyi, C., Hatvani, L. (2010) A challenge to mushroom growers: the green mould disease of cultivated champignons. In: Méndez-Vilas, A. (ed.) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Badajoz, Spain. pp. 295–305.Google Scholar
  17. 17.
    Kredics, L., Hatvani, L., Naeimi, S., Körmöczi, P., Manczinger, L., Vágvölgyi, C., Druzhinina, I. (2014) Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta, V. K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., Tuohy, M. (eds) Biotechnology and Biology of Trichoderma. Elsevier Science B. V., Amsterdam, The Netherlands. pp. 3–24.CrossRefGoogle Scholar
  18. 18.
    Kubicek, C. P., Komon-Zelazowska, M., Sándor, E., Druzhinina, I. S. (2007) Facts and challenges in the understanding of the biosynthesis of peptaibols by Trichoderma. Chem. Biodivers. 4, 1068–1082.CrossRefPubMedGoogle Scholar
  19. 19.
    Leclerc, G., Goulard, C., Prigent, Y., Bodo, B., Wróblewski, H., Rebuffat, S. (2001) Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma longibrachiatum. J. Nat. Prod. 64, 164–170.CrossRefPubMedGoogle Scholar
  20. 20.
    Leitgeb, B., Szekeres, A., Manczinger, L., Vágvölgyi, C., Kredics, L. (2007) The history of alamethicin: a review of the most extensively studied peptaibol. Chem. Biodivers. 4, 1027–1051.CrossRefPubMedGoogle Scholar
  21. 21.
    Lorito, M., Woo, S. L., Garcia, I., Colucci, G., Harman, G. E., Pintor-Toro, J. A., Scala, F. (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl Acad. Sci. USA 95, 7860–7865.CrossRefPubMedGoogle Scholar
  22. 22.
    Marahiel, M. A., Stachelhaus T., Mootz, H. D. (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2674.CrossRefPubMedGoogle Scholar
  23. 23.
    Marik, T., Szekeres, A., Druzhinina, I. S., Andersson, M. A., Salkinoja-Salonen, M., Tyagi, C., Leitgeb, B., Vágvölgyi, C., Kredics, L. (2016) Bioactive peptaibols of forest-derived Trichoderma isolates from section Longibrachiatum. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience, “Sustainability in Plant and Crop Protection”, Springer Int. Publ. AG, Cham (WWW), Switzerland (in press).Google Scholar
  24. 24.
    Marik, T., Szekeres, A., Várszegi, C., Czifra, D., Vágvölgyi, C., Kredics, L. (2013) Rapid bioactivitybased pre-screening method for the detection of peptaibiotic-producing Trichoderma strains. Acta Biol. Szeged 57, 1–7.Google Scholar
  25. 25.
    Marik, T., Várszegi, C., Kredics, L., Vágvölgyi, C., Szekeres, A. (2013) Mass spectrometric investigation of alamethicin. Acta Biol. Szeged. 57, 109–112.Google Scholar
  26. 26.
    Meyer, C. E., Reusser, F. (1967) A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia 23, 85–86.CrossRefPubMedGoogle Scholar
  27. 27.
    Mikkola, R., Andersson, M. A., Kredics, L., Grigoriev, P. A., Sundell, N., Salkinoja-Salonen, M. S. (2012) 20-Residue and 11-residue peptaibols from the fungus Trichoderma longibrachiatum are synergistic in forming Na+/K+-permeable channels and adverse action towards mammalian cells. FEBS J. 279, 4172–4190.CrossRefPubMedGoogle Scholar
  28. 28.
    Mohamed-Benkada, M., Montagu, M., Biard, J. F., Mondeguer, F., Verite, P., Dalgalarrondo, M., Bissett, J., Pouchus, Y. F. (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun. Mass Spectrom. 20, 1176–1180.CrossRefPubMedGoogle Scholar
  29. 29.
    Mueller, P., Rudin, D. O. (1968) Action potentials induced in biomolecular lipid membranes. Nature 217, 713–719.CrossRefPubMedGoogle Scholar
  30. 30.
    Mukherjee, P. K., Wiest, A., Ruiz, N., Keightley, A., Moran-Diez, M. E., McCluskey, K., Pouchus, Y. F., Kenerley, C. M. (2010) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J. Biol. Chem. 286, 4544–4554.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nelson, E. B. (2004) Biological control of Oomycetes and fungal pathogens. In: Goodman, R. M. (ed.) Encyclopedia of Plant and Crop Science. Marcell Dekker Inc., New York, USA. pp. 137–140.CrossRefGoogle Scholar
  32. 32.
    Neumann, N. K. N., Stoppacher, N., Zeilinger, S., Degenkolb, T., Brückner, H., Schuhmacher, R. (2015) The peptaibiotics database -a comprehensive online resource. Chem. Biodivers. 12, 743–751.CrossRefPubMedGoogle Scholar
  33. 33.
    Payne, J. W., Jakes, R., Hartley, B. S. (1970) The primary structure of alamethicin. Biochem. J. 117, 757–766.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Pócsfalvi, G., Ritieni, A., Ferranti, P., Randazzo, G., Vékey, K., Malorni, A. (1997) Microheterogeneity characterization of a paracelsin mixture from Trichoderma reesei using high-energy collision-induced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11, 922–930.CrossRefPubMedGoogle Scholar
  35. 35.
    Roepstorff, P., Fohlman, J. (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass. Spectrom. 11, 601.CrossRefPubMedGoogle Scholar
  36. 36.
    Ruiz, N., Petit, K., Vansteelandt, M., Kerzaon, I., Baudet, J., Amzil, Z., Biard, J.-F., Grovel, O., Pouchus, Y. F. (2010) Enhancement of domoic acid neurotoxicity on Diptera larvae bioassay by marine fungal metabolites. Toxicon 55, 805–810.CrossRefPubMedGoogle Scholar
  37. 37.
    Schmoll, M., Schuster, A. (2010) Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87, 787–799.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shakeri, J., Foster, H. (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzyme Microb. Technol. 40, 961–968.CrossRefGoogle Scholar
  39. 39.
    Stoppacher, N., Neumann, N. K., Burgstaller, L., Zeilinger, S., Degenkolb, T., Brückner, H., Schuhmacher, R. (2013) The comprehensive peptaibiotics database. Chem. Biodivers. 10, 734–743.CrossRefPubMedGoogle Scholar
  40. 40.
    Strieker, M., Tanović, A., Marahiel, M. A. (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr. Opin. Struct. Biol. 20, 234–240.CrossRefPubMedGoogle Scholar
  41. 41.
    Suwan, S., Isobe, M., Kanokmedhakul, S., Lourit, N., Kanokmedhakul, K., Soytong, K., Koga, K. (2000) Elucidation of high micro-heterogeneity of an acidic-neutral trichotoxin mixture from Trichoderma harzianum by electrospray ionization quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 35, 1438–1451.CrossRefPubMedGoogle Scholar
  42. 42.
    Szabó, M., Csepregi, K., Gálber, M., Virányi, F., Fekete, C. (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol. Control 63, 121–128.CrossRefGoogle Scholar
  43. 43.
    Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z, Hatvani, L., Manczinger, L., Vágvölgyi, C. (2005) Peptaibols and related peptaibiotics of Trichoderma -a review. Acta Microbiol. Immunol. Hung. 52, 137–168.CrossRefPubMedGoogle Scholar
  44. 44.
    Verma, V. C., Gond, S. K., Kumar, A., Kharwar, R. N., Strobel, G. (2007) The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (neem) from Varanasi (India). Microb. Ecol. 54, 119–125.CrossRefPubMedGoogle Scholar
  45. 45.
    Vinale, F., Sivasithamparam, K. E. A. (2012) Trichoderma secondary metabolites that affect plant metabolism. Nat. Prod. Commun. 7, 1545–1550.PubMedGoogle Scholar
  46. 46.
    Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Ruocco, M., Lanzuise, S., Manganiello, G., Lorito, M. (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol. J. 8, 127–139.CrossRefGoogle Scholar
  47. 47.
    Weindling, R. (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22, 837–845.Google Scholar
  48. 48.
    Whitmore, L., Chugh, J. K., Snook, C. F., Wallace, B. A. (2003) The peptaibol database: a sequence and structure resource. J. Pept. Sci. 9, 663–665.CrossRefPubMedGoogle Scholar
  49. 49.
    Whitmore, L., Wallace, B. A. (2004) The peptaibol database: a database for sequences and structures of naturally occurring peptaibols. Nucl. Acids Res. 32, D593-D594.Google Scholar
  50. 50.
    Wiest, A., Grzegorski, D., Xu, B.-W., Goulard, C., Rebuffat, S., Ebbole, D. J., Bodo, B., Kenerley, C. (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J. Biol. Chem. 277, 20862–20868.CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Parisa Rahimi Tamandegani
    • 1
  • Doustmorad Zafari
    • 1
    Email author
  • Tamás Marik
    • 2
  • András Szekeres
    • 2
  • Csaba Vágvölgyi
    • 2
  • László Kredics
    • 2
    Email author
  1. 1.Department of Plant ProtectionBu Ali Sina UniversityHamedanIran
  2. 2.Department of Microbiology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations