The Effects of Cadmium on the Biochemical and Physiological Parameters of Eruca Sativa

Abstract

In this study, Eruca sativa (Rocket) seedlings were treated with different cadmium (Cd) concentrations (0, 150, 300 and 450 μg ∙ g−1). The effects of Cd on lipid peroxidation, enzymatic (APx, CAT, GPX, SOD) and non-enzymatic antioxidants (total ascorbate, dehydroascorbate, ascorbate, non-protein thiol), fresh and dry masses, water content were determined. Also, Cd content of the leaves and the roots were analysed. The highest cadmium accumulation of leaves was at 450 μg ∙ g−1 Cd treatment and the accumulation was 2.62 times greater than those in the roots. The translocation factor was 3.89 at 300 μg ∙ g−1 Cd treatment. Cd treatments caused decreases of fresh, dry mass and water content of leaves and roots. Malondialdehyde content, which is an index of lipid peroxidation, was increased in proportion with the increase in Cd. While there was not change in the activity of GPX according to control, a decrease in activities of SOD, CAT and APX were observed with the increase of cadmium concentration. Although a significant increase in the amounts of non-protein thiol groups and proline were observed in 450 μg ∙ g−1 Cd treated plants, Cd did not lead to a significant change in AsA, DHA and total AsA contents. According to the results of the research, E. sativa may be a Cd hyperaccumulator plant and we suggest that the plant may be a candidate plant for remediation of Cd-contaminated soil.

References

  1. 1.

    Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121–126.

    CAS  Article  Google Scholar 

  2. 2.

    Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Quarmby, C., Roberts, J. D. (1986) Chemical analysis. In: Chapman, S. B. (ed.) Methods in Plant Ecology. Blackwell Science, Oxford, pp. 411–466.

    Google Scholar 

  3. 3.

    Anjum, N. A., Ahamd, I., Mohmood, I., Pacheco, M., Duarte, A. C., Pereira, E., Umar, S., Ahmad, A., Khan, N. A., Iqbal, M., Prasad, M. N. V. (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids–a review. Environ. Exp. Bot. 75, 307–324.

    CAS  Google Scholar 

  4. 4.

    Apel, K., Hirt, H. (2004) Reactive oxygen species: metabolism oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 55, 373–399.

    CAS  Article  Google Scholar 

  5. 5.

    Benavides, M. P., Gallego, S. M., Tomaro, M. L. (2005) Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 21–34.

    CAS  Article  Google Scholar 

  6. 6.

    Cakmak, I., Marschner, H. (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathion reductase in bean leaves. Plant Physiol. 98, 1222–1227.

    CAS  Article  Google Scholar 

  7. 7.

    Chaoui, A., Mazhoudi, S., Ghorbal, M. H., El Ferjani, E. (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127, 139–147.

    CAS  Article  Google Scholar 

  8. 8.

    Chen, Y. X., He, Y. F., Luo, Y. M., Yu, Y. L., Lin, Q., Wong, M. H. (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50, 789–793.

    CAS  Article  Google Scholar 

  9. 9.

    Claussen, W. (2005) Proline as a measure of stress in tomato plants. Plant Sci. 168, 241–248.

    CAS  Article  Google Scholar 

  10. 10.

    Clemens, S. (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88, 1707–1719.

    CAS  Article  Google Scholar 

  11. 11.

    Cosio, C., Martinoia, E., Keller, C. (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 134, 716–725.

    CAS  Article  Google Scholar 

  12. 12.

    Demchenko, N. P., Kalimova, I. B., Demchenko, K. N. (2005) Effect of nickel on growth, proliferation, and differentiation of root cells in Triticum aestivum seedlings. Russian J. Plant Physiol. 52, 220–228.

    CAS  Article  Google Scholar 

  13. 13.

    Demir, E., Ozdener, Y. (2015) The effects of cadmium on the antioxidative responses of leaves of Brassica oleracea var. acephala. Fresenius Env. Bull. 24, 4729–4737.

    CAS  Google Scholar 

  14. 14.

    Dhir, B., Sharmila, P., Saradhi, P. P. (2004) Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquat. Toxicol. 66, 141–147.

    CAS  Article  Google Scholar 

  15. 15.

    Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77.

    CAS  Article  Google Scholar 

  16. 16.

    Gill, S. S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.

    CAS  Article  Google Scholar 

  17. 17.

    Gill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., Tuteja, N. (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70, 204–212.

    CAS  Article  Google Scholar 

  18. 18.

    Gupta, M., Cuypers, A., Vangrosveld, J., Clisters, H. (1999) Copper affect the enzymes of the ascorbate- glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol. Plant. 106, 262–267.

    CAS  Article  Google Scholar 

  19. 19.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.

    CAS  Article  Google Scholar 

  20. 20.

    Lee, S., Petros, D., Moon, J. S., Ko, T. S., Goldsbrough, P. B., Korban, S. S. (2003) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol. Biochem. 41, 903–910.

    CAS  Article  Google Scholar 

  21. 21.

    Leon, A. M., Palma, J. M., Corpas, F. J., Gomez, M., Romero-Puertas, M. C., Chatterjee, D., Mateos, R. M., del Rio, L. A., Sandalio, L.M. (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Phys. Biochem. 40, 813–820.

    CAS  Article  Google Scholar 

  22. 22.

    Madamanchi, N. R., Donahue, J., Cramer, C. L., Alscher, R. G., Pedersen, K. (1984) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short term exposure to sulphur dioxide. Plant Mol. Biol. 26, 95–103.

    Article  Google Scholar 

  23. 23.

    Madhava Rao, K. V., Srestry, T. V. S. (2000) Antioxidative parameters in the seedlings of pigeon pea (Cacanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157, 113–128.

    CAS  Article  Google Scholar 

  24. 24.

    Masarovičova, E., Kralova, K., Kummerova, M. (2010) Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiol. Plant. 32, 823–829.

    Article  Google Scholar 

  25. 25.

    Mishra, S., Srivastava, S., Tripathia, R. D., Govindarajan, R., Kuriakose, S. V., Prasad, M. N. V. (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 44, 25–37.

    CAS  Article  Google Scholar 

  26. 26.

    Munzuroglu, O., Geckil, H. (2002) Effect of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contan. Toxicol. 43, 203–213.

    CAS  Article  Google Scholar 

  27. 27.

    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.

    CAS  Google Scholar 

  28. 28.

    Okamura, M. (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin. Chim. Acta 103, 259.

    CAS  Article  Google Scholar 

  29. 29.

    Ozdener, Y., Aydın, B. K. (2010) The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket). Acta Physiol. Plant. 32, 469–476.

    CAS  Article  Google Scholar 

  30. 30.

    Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., Parsons, J. G. (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol. 66, 727–734.

    CAS  PubMed  Google Scholar 

  31. 31.

    Polle, A., Otter, T., Siefert, F. (1994) Apoplastic peroxidases and lignification in needless of Norvey spruce (Picea abies L.). Plant Physiol. 106, 53–60.

    CAS  Article  Google Scholar 

  32. 32.

    Qiu, R. L., Zhao, X., Tang, Y. T., Yu, F. M., Hu, P. J. (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74, 6–12.

    CAS  Article  Google Scholar 

  33. 33.

    Rai, V., Vajpayee, P., Singh, S. N., Mehrotra, S. (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuflorum L. Plant Sci. 167, 1159–1169.

    CAS  Article  Google Scholar 

  34. 34.

    Rout, G. R., Das, P. (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23, 3–11.

    Article  Google Scholar 

  35. 35.

    Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C., del Rio, L. A. (2001) Cadmiuminduced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 2115–2126.

    CAS  Article  Google Scholar 

  36. 36.

    Tu, C., Ma, L. Q. (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J. Environ. Qual. 31, 641–647.

    CAS  Article  Google Scholar 

  37. 37.

    Xiong, Z. T. (1998) Lead uptake and effect on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull. Environ. Contam. Toxicol. 60, 285–291.

    CAS  Article  Google Scholar 

  38. 38.

    Zwolak, I., Zaporowska, H. (2009) Preliminary studies on the effect of zinc and selenium on vanadium-induced cytotoxicity in vitro. Acta Biol. Hung. 60, 55–67.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasemin Ozdener Kompe.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kompe, Y.O., Sagiroglu, A. The Effects of Cadmium on the Biochemical and Physiological Parameters of Eruca Sativa. BIOLOGIA FUTURA 67, 393–402 (2016). https://doi.org/10.1556/018.67.2016.4.5

Download citation

Keywords

  • Eruca sativa
  • cadmium–
  • hyperaccumulator–
  • oxidative stress