Advertisement

Acta Biologica Hungarica

, Volume 67, Issue 4, pp 393–402 | Cite as

The Effects of Cadmium on the Biochemical and Physiological Parameters of Eruca Sativa

  • Yasemin Ozdener KompeEmail author
  • Ahmet Sagiroglu
Open Access
Article

Abstract

In this study, Eruca sativa (Rocket) seedlings were treated with different cadmium (Cd) concentrations (0, 150, 300 and 450 μg ∙ g−1). The effects of Cd on lipid peroxidation, enzymatic (APx, CAT, GPX, SOD) and non-enzymatic antioxidants (total ascorbate, dehydroascorbate, ascorbate, non-protein thiol), fresh and dry masses, water content were determined. Also, Cd content of the leaves and the roots were analysed. The highest cadmium accumulation of leaves was at 450 μg ∙ g−1 Cd treatment and the accumulation was 2.62 times greater than those in the roots. The translocation factor was 3.89 at 300 μg ∙ g−1 Cd treatment. Cd treatments caused decreases of fresh, dry mass and water content of leaves and roots. Malondialdehyde content, which is an index of lipid peroxidation, was increased in proportion with the increase in Cd. While there was not change in the activity of GPX according to control, a decrease in activities of SOD, CAT and APX were observed with the increase of cadmium concentration. Although a significant increase in the amounts of non-protein thiol groups and proline were observed in 450 μg ∙ g−1 Cd treated plants, Cd did not lead to a significant change in AsA, DHA and total AsA contents. According to the results of the research, E. sativa may be a Cd hyperaccumulator plant and we suggest that the plant may be a candidate plant for remediation of Cd-contaminated soil.

Keywords

Eruca sativa– cadmium– hyperaccumulator– oxidative stress 

References

  1. 1.
    Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121–126.CrossRefGoogle Scholar
  2. 2.
    Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Quarmby, C., Roberts, J. D. (1986) Chemical analysis. In: Chapman, S. B. (ed.) Methods in Plant Ecology. Blackwell Science, Oxford, pp. 411–466.Google Scholar
  3. 3.
    Anjum, N. A., Ahamd, I., Mohmood, I., Pacheco, M., Duarte, A. C., Pereira, E., Umar, S., Ahmad, A., Khan, N. A., Iqbal, M., Prasad, M. N. V. (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids–a review. Environ. Exp. Bot. 75, 307–324.Google Scholar
  4. 4.
    Apel, K., Hirt, H. (2004) Reactive oxygen species: metabolism oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 55, 373–399.CrossRefGoogle Scholar
  5. 5.
    Benavides, M. P., Gallego, S. M., Tomaro, M. L. (2005) Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 21–34.CrossRefGoogle Scholar
  6. 6.
    Cakmak, I., Marschner, H. (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathion reductase in bean leaves. Plant Physiol. 98, 1222–1227.CrossRefGoogle Scholar
  7. 7.
    Chaoui, A., Mazhoudi, S., Ghorbal, M. H., El Ferjani, E. (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127, 139–147.CrossRefGoogle Scholar
  8. 8.
    Chen, Y. X., He, Y. F., Luo, Y. M., Yu, Y. L., Lin, Q., Wong, M. H. (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50, 789–793.CrossRefGoogle Scholar
  9. 9.
    Claussen, W. (2005) Proline as a measure of stress in tomato plants. Plant Sci. 168, 241–248.CrossRefGoogle Scholar
  10. 10.
    Clemens, S. (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88, 1707–1719.CrossRefGoogle Scholar
  11. 11.
    Cosio, C., Martinoia, E., Keller, C. (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 134, 716–725.CrossRefGoogle Scholar
  12. 12.
    Demchenko, N. P., Kalimova, I. B., Demchenko, K. N. (2005) Effect of nickel on growth, proliferation, and differentiation of root cells in Triticum aestivum seedlings. Russian J. Plant Physiol. 52, 220–228.CrossRefGoogle Scholar
  13. 13.
    Demir, E., Ozdener, Y. (2015) The effects of cadmium on the antioxidative responses of leaves of Brassica oleracea var. acephala. Fresenius Env. Bull. 24, 4729–4737.Google Scholar
  14. 14.
    Dhir, B., Sharmila, P., Saradhi, P. P. (2004) Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquat. Toxicol. 66, 141–147.CrossRefGoogle Scholar
  15. 15.
    Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77.CrossRefGoogle Scholar
  16. 16.
    Gill, S. S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.CrossRefGoogle Scholar
  17. 17.
    Gill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., Tuteja, N. (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70, 204–212.CrossRefGoogle Scholar
  18. 18.
    Gupta, M., Cuypers, A., Vangrosveld, J., Clisters, H. (1999) Copper affect the enzymes of the ascorbate- glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol. Plant. 106, 262–267.CrossRefGoogle Scholar
  19. 19.
    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.CrossRefGoogle Scholar
  20. 20.
    Lee, S., Petros, D., Moon, J. S., Ko, T. S., Goldsbrough, P. B., Korban, S. S. (2003) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol. Biochem. 41, 903–910.CrossRefGoogle Scholar
  21. 21.
    Leon, A. M., Palma, J. M., Corpas, F. J., Gomez, M., Romero-Puertas, M. C., Chatterjee, D., Mateos, R. M., del Rio, L. A., Sandalio, L.M. (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Phys. Biochem. 40, 813–820.CrossRefGoogle Scholar
  22. 22.
    Madamanchi, N. R., Donahue, J., Cramer, C. L., Alscher, R. G., Pedersen, K. (1984) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short term exposure to sulphur dioxide. Plant Mol. Biol. 26, 95–103.CrossRefGoogle Scholar
  23. 23.
    Madhava Rao, K. V., Srestry, T. V. S. (2000) Antioxidative parameters in the seedlings of pigeon pea (Cacanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157, 113–128.CrossRefGoogle Scholar
  24. 24.
    Masarovičova, E., Kralova, K., Kummerova, M. (2010) Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiol. Plant. 32, 823–829.CrossRefGoogle Scholar
  25. 25.
    Mishra, S., Srivastava, S., Tripathia, R. D., Govindarajan, R., Kuriakose, S. V., Prasad, M. N. V. (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 44, 25–37.CrossRefGoogle Scholar
  26. 26.
    Munzuroglu, O., Geckil, H. (2002) Effect of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contan. Toxicol. 43, 203–213.CrossRefGoogle Scholar
  27. 27.
    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.Google Scholar
  28. 28.
    Okamura, M. (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin. Chim. Acta 103, 259.CrossRefGoogle Scholar
  29. 29.
    Ozdener, Y., Aydın, B. K. (2010) The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket). Acta Physiol. Plant. 32, 469–476.CrossRefGoogle Scholar
  30. 30.
    Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., Parsons, J. G. (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol. 66, 727–734.PubMedGoogle Scholar
  31. 31.
    Polle, A., Otter, T., Siefert, F. (1994) Apoplastic peroxidases and lignification in needless of Norvey spruce (Picea abies L.). Plant Physiol. 106, 53–60.CrossRefGoogle Scholar
  32. 32.
    Qiu, R. L., Zhao, X., Tang, Y. T., Yu, F. M., Hu, P. J. (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74, 6–12.CrossRefGoogle Scholar
  33. 33.
    Rai, V., Vajpayee, P., Singh, S. N., Mehrotra, S. (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuflorum L. Plant Sci. 167, 1159–1169.CrossRefGoogle Scholar
  34. 34.
    Rout, G. R., Das, P. (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23, 3–11.CrossRefGoogle Scholar
  35. 35.
    Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C., del Rio, L. A. (2001) Cadmiuminduced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 2115–2126.CrossRefGoogle Scholar
  36. 36.
    Tu, C., Ma, L. Q. (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J. Environ. Qual. 31, 641–647.CrossRefGoogle Scholar
  37. 37.
    Xiong, Z. T. (1998) Lead uptake and effect on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull. Environ. Contam. Toxicol. 60, 285–291.CrossRefGoogle Scholar
  38. 38.
    Zwolak, I., Zaporowska, H. (2009) Preliminary studies on the effect of zinc and selenium on vanadium-induced cytotoxicity in vitro. Acta Biol. Hung. 60, 55–67.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Arts and SciencesUniversity of Ondokuz mayisSamsunTurkey

Personalised recommendations