Advertisement

Acta Biologica Hungarica

, Volume 67, Issue 4, pp 373–378 | Cite as

ChIP—Does It Work Correctly? The Optimization Steps of Chromatin Immunoprecipitation

  • Małgorzata Kus-LiśkiewiczEmail author
Article

Abstract

The proteins interaction with DNA is one of the key regulatory elements of many biological processes; including gene transcription, epigenetic modification or cell differentiation. Immunoprecipitation of chromatin; ChIP; is a method used to assess the interaction of the protein with a DNA sequence, and determines the localization of specific locus in the genome. The main steps of this method are fixation, sonication, immunoprecipitation and analysis of DNA. Although the immunoprecipitation assay is a multipurpose tool applied in biochemistry and biotechnology, it requires optimization. This paper describes several critical parameters that should be taken into account when immunoprecipitation assay is applied.

Keywords

Chromatin immunoprecipitation transcription factor binding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barski, A., Frenkel, B. (2004) ChIP display: novel method for identification of genomic targets of transcription factors. Nucleic Acids Res. 32, e104.CrossRefGoogle Scholar
  2. 2.
    Browne, J. A., Harris, A., Leir, S. H. (2014) An optimized protocol for isolating primary epithelial cell chromatin for ChIP. PLoS One 9, e100099.CrossRefGoogle Scholar
  3. 3.
    Collas, P., Dahl, J. A. (2008) Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front Biosci. 13, 929–943.CrossRefGoogle Scholar
  4. 4.
    Das, P. M., Ramachandran, K., Vanwert, J., Singal, R. (2004) Chromatin immunoprecipitation assay. Biotechniques 37, 961–969.CrossRefGoogle Scholar
  5. 5.
    Kus-Liskiewicz, M., Polanska, J., Korfanty, J., Olbryt, M., Vydra, N., Toma, A., Widlak, W. (2013) Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia. BMC Genomics 14, 456.CrossRefGoogle Scholar
  6. 6.
    Kus-Liskiewicz, M., Widlak, W. (2011) [Finding targets of transcriptional regulators-chromatin immunoprecipitation assay (ChIP)]. Postepy Biochem. 57, 418–424.PubMedGoogle Scholar
  7. 7.
    Mundade, R., Ozer, H. G., Wei, H., Prabhu, L., Lu, T. (2014) Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Cell Cycle 13, 2847–2852.CrossRefGoogle Scholar
  8. 8.
    Ray, S., Das, S. K. (2006) Chromatin immunoprecipitation assay detects ERalpha recruitment to gene specific promoters in uterus. Biol Proced Online 8, 69–76.CrossRefGoogle Scholar
  9. 9.
    Saiz, L. (2012) The physics of protein-DNA interaction networks in the control of gene expression. J Phys. Condens Matter 24, 193102.CrossRefGoogle Scholar
  10. 10.
    Spencer, V. A., Sun, J. M., Li, L., Davie, J. R. (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31, 67–75.CrossRefGoogle Scholar
  11. 11.
    Trinklein, N. D., Chen, W. C., Kingston, R. E., Myers, R. M. (2004) Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperones 9, 21–28.CrossRefGoogle Scholar
  12. 12.
    Trinklein, N. D., Murray, J. I., Hartman, S. J., Botstein, D., Myers, R. M. (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15, 1254–1261.CrossRefGoogle Scholar
  13. 13.
    Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., Shahab, A., Yong, H. C., Fu, Y., Weng, Z., Liu, J., Zhao, X. D., Chew, J. L., Lee, Y. L., Kuznetsov, V. A., Sung, W. K., Miller, L. D., Lim, B., Liu, E. T., Yu, Q., Ng, H. H., Ruan, Y. (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Biotechnology, Biotechnology Centre for Applied and Fundamental SciencesUniversity of RzeszowPoland

Personalised recommendations