Advertisement

Acta Biologica Hungarica

, Volume 67, Issue 3, pp 225–235 | Cite as

Antioxidant Defense System Parameters in Isolated Fish Hepatocytes Exposed to Bisphenol a — Effect of Vitamin C

  • Özlem Kaya
  • Burak KaptanerEmail author
Article

Abstract

In this study, isolated hepatocytes of pearl mullet (Alburnus tarichi) were exposed to bisphenol A (BPA) at concentrations of 25, 50, 100, and 200 µM for 24 h. Moreover, an in vitro antioxidant concentration of vitamin C (50 µM) was administrated to the culture medium along with the BPA exposures. Next, the antioxidant defense system parameters were analyzed. According to the results, the highest concentration of BPA (200 µM) proved to be severely toxic for the cells. The increased activities of superoxide dismutase (SOD) and glutathione-S-transferase (GST), the fuctuated activities of glutathione peroxidase (GPx), and the decreased content of reduced glutathione (GSH) were compared to the control group after the BPA exposures. Vitamin C co-administration was found to cause further increases in the SOD, GPx, and GST activities in some of the experimental groups and vitamin C could not restore the GSH content. Malondialdehyde (MDA) levels were observed to be unaffected in all exposure groups. These results show that BPA causes alterations in the antioxidant defenses of the isolated fsh hepatocytes. In addition, vitamin C co-administration along with BPA was found to be non-protective against BPA-induced oxidative stress, consequently, aggravated a negative BPA impact.

Keywords

Alburnus tarichi bisphenol A vitamin C isolated fsh hepatocytes antioxidant defenses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almroth, B. C. (2008) Oxidative damage in fsh used is biomarkers in feld and laboratory studies. Department of Zoology/Zoophysiology, Chalmers Reproservice, Göteborg University, Sweden,; 74 pp.Google Scholar
  2. 2.
    Belfroid, A., Van Velzen, M., Van der Horst, B., Vethaak, D. (2002) Occurrence of bisphenol A in surface water and uptake in fsh: evaluation of feld measurements. Chemosphere 49, 97–103.PubMedGoogle Scholar
  3. 3.
    Berry, M. N., Friend, D. S. (1969) High yield preparation of isolated rat liver parenchymal cells. J. Cell Biol. 43, 506–520.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Beutler, E. (1984) Red cell metabolism. A manual of biochemical methods, 3rd edn. Grune and Startton, sNew York, pp. 105–106.Google Scholar
  5. 5.
    Bindhumol, V., Chitra, K. C., Mathur, P. P. (2003) Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 188, 117–124.PubMedGoogle Scholar
  6. 6.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.Google Scholar
  7. 7.
    Crain, D., Eriksen, M., Iguchi, T., Jobling, S., Laufer, H., LeBlanc, G. A., Guilette Jr., L. J. (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod. Toxicol. 24, 225–239.PubMedGoogle Scholar
  8. 8.
    Çakal Arslan, Ö., Parlak, H. (2008) Effects of bisphenol A on the embryonic development of sea urchin (Paracentrotus lividus). Environ. Toxicol. 23, 387–392.Google Scholar
  9. 9.
    Danulat, E., Selcuk, B. (1992) Life history and environmental conditions of the anadromous Chalcalburnus tarichi (Cyprinidae) in the highly alkaline Lake Van, Eastern Anatolia, Turkey. Arch. Hydrobiol. 126, 105–125.Google Scholar
  10. 10.
    Das, K. K. Das, S. N., Ghundasi, S. A. (2008) Nickel, its adverse health effects and oxidative stress. Indian J. Med. Res. 128, 412–425.PubMedGoogle Scholar
  11. 11.
    Dickinson, D. A., Forman, H. J. (2002) Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 64, 1019–1026.PubMedGoogle Scholar
  12. 12.
    Elp, M., Şen, F., Atıcı, A. A. (2014) The distribution area of tarek [Alburnus Tarichi (Guldenstaedtii, 1814)] in the Van lake basin, Turkey. Y.Y.U. J. Agr. Sci. 24, 228–232.Google Scholar
  13. 13.
    El-Shenawy, N. S., Al-Ghamdi, O. A. (2014) Phenthoate induced-oxidative stress in fresh isolated mice hepatocytes: alleviation by ascorbic acid. Toxicol. Environ. Health Sci. 6, 67–80.Google Scholar
  14. 14.
    Gangadharan, B., Murugan, M. A., Mathur, P. P. (2001) Effect of methoxychlor on antioxidant system of goat epididymal sperm in vitro. Asian J. Androl. 3, 285–288.PubMedGoogle Scholar
  15. 15.
    Habig, W. H., Pabst, M. J., Jakoby, W. B. (1974) Glutathione S-transferases. The frst enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.Google Scholar
  16. 16.
    Honkanen, J. O., Holopainen, I. J., Kukkonen, J. V. K. (2004) Bisphenol A induces yolk-sac oedema and other adverse effects in landlocked salmon (Salmo salar m. sebago) yolk-sac fry. Chemosphere 55, 187–196.PubMedGoogle Scholar
  17. 17.
    Hulak, M., Gazo, I., Anna, S., Pavla, L. (2013) In vitro effects of bisphenol A on the quality parameters, oxidative stres, DNA integrity and adenosine triphosphate content in sterlet (Acipenser ruthe-nus) spermatozoa. Comp. Biochem. Physiol. 158, 64–71.Google Scholar
  18. 18.
    Isik, I., Celik, I. (2008) Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbow trout (Oncorhynchus mykiss). Pest. Biochem. Physiol. 92, 38–42.Google Scholar
  19. 19.
    Jain, S. K., McVie, R., Duett, J., Herbst, J. J. (1989) Erythrocyte membrane lipid peroxidation and glycolylated hemoglobin in diabetes. Diabetes 38, 1539–1543.PubMedGoogle Scholar
  20. 20.
    Jialal, I., Grundy, S. M. (1991) Preservation of the endogenous antioxidants in low density lipoprotein by ascorbate but not probucol during oxidative modifcation. J. Clin. Invest. 87, 43–53.Google Scholar
  21. 21.
    Kabuto, H., Hasuike, S., Minagawa, N., Shishibori, T. (2003) Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ. Res. 93, 31–35.PubMedGoogle Scholar
  22. 22.
    Kaptaner, B. (2015) Cytotoxic effects of 4-octylphenol on fsh hepatocytes. Cytotechnology DOI: 10.1007/s10616-015-9916-3.Google Scholar
  23. 23.
    Kaptaner, B., Kankaya, E. (2016) Caspase-3 activation in cytotoxicity of isolated rainbow trout (Oncorhycus mykiss) hepatocytes induced by bisphenol A. Fresen. Environ. Bull. 25, 1167–1174.Google Scholar
  24. 24.
    Korkmaz, A., Kolankaya, D. (2009) The protective effect of ascorbic acid against renal ischemia-reperfusion injury in male rats. Ren. Fail. 31, 36–43.PubMedGoogle Scholar
  25. 25.
    Korkmaz, A., Ahbap, M. A., Kolankaya, D., Barlas, N. (2010) Infuence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem. Toxicol. 48, 2868–2871.Google Scholar
  26. 26.
    Kuch, H. M., Ballschmiter, K. (2001) Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ. Sci. Technol. 35, 3201–3206.PubMedGoogle Scholar
  27. 27.
    Latchoumycandane, C., Chitra, K. C., Mathur, P. P. (2002) The Effect of 2,3,7,8,-tetrachlorodibenzo-p-dioxin on the antioxidant system in mitochondrial and microsomal fractions of rat testis. Toxicology 171, 113–118.Google Scholar
  28. 28.
    Liu, C., Yu, K., Shi, X., Wang, J., Lam, P. K. S., Wu, R. S. S., Zhou, B. (2007) Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquat. Toxicol. 82, 135–143.PubMedGoogle Scholar
  29. 29.
    Lv, X., Zhou, Q. F., Song, M. Y., Jiang, G. B., Shao, J. (2007) Vitellogenic reponses of 17 beta-estradiol and bisphenol A in male Chinese loach (Misgurnus anguillicaudatus). Environ. Toxicol. Pharmacol. 24, 155–159.PubMedGoogle Scholar
  30. 30.
    Mortensen, A. S., Tolfsen, C. C., Arukwe, A. (2006) Gene expression patterns in estrogen (nonylphenol) and aryl hydrocarbon receptor agonists (PCB-77) interaction using rainbow trout (Oncorhynchus mykiss) primary hepatocyte culture. J. Toxicol. Environ. Health 69, 1–19.Google Scholar
  31. 31.
    Orta, B., Erkan, M. (2014) Effects of vitamin C on antioxidant systems and steroidogenic enzymes in sodium fuoride-exposed TM4 Sertoli cells. Fluoride 47, 139–151.Google Scholar
  32. 32.
    Paglia, D. E., Valentine, W. N. (1967) Studies on the quantitative and qualitative and qualitative characterization of eryhrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Park, C. B., Kim, B. H., Na, O. S., Choi, Y. C., Lee, Y. D., Baek, H. J., Kim, H. B., Takemura, A. (2007) Induction of in vitro vitellogenin synthesis by bisphenol, nonylphenol and octyphenol in Chinese minnow (Phoxinusoxy cephalus) hepatocytes. Korean J. Biol. Sci. 7, 227–235.Google Scholar
  34. 34.
    Petersen, K., Tollefsen, K. (2011) Assessing combined toxicity of estrogen receptor agonists in a primary culture of rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 101, 186–195.PubMedGoogle Scholar
  35. 35.
    Rankhouhi, T. R., van Holsteijn, I., Letcher, R., Giesy, J. P., Van den Berg, M. (2002) Effects of primary exposure to environmental and natural estrogens on vitellogenin production in carp (Cyprinus carpio) hepatocytes. Toxicol. Sci. 67, 75–80.Google Scholar
  36. 36.
    Rietjens, I., Boersma, M., de Haan, L., Spenkelink, B., Awad, H. M., Cnubben, N. H., van Zanden, J. J., van der Woude, H., Alink, G. M., Koeman, J. H. (2002) The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and favonoids. Environ. Toxicol. Pharmacol. 11, 321–333.PubMedGoogle Scholar
  37. 37.
    Sakagami. H., Satoh, K. (1997) Prooxidant action of two antioxidants: ascorbic acid and gallic acid. Anticancer Res. 17, 221–224.PubMedGoogle Scholar
  38. 38.
    Segner, H. (1198) Isolation and primary culture of teleost hepatocytes. Comp. Biochem. Physiol. 120, 71–81.Google Scholar
  39. 39.
    Staples, C. A., Dorn, P. B., Klecka, G. M., O’Block, S. T., Harris, L. R. (1998) A review of the environmental fate, effects and exposures of bisphenol A. Chemosphere 36, 2149–2173.PubMedGoogle Scholar
  40. 40.
    Stephensen, E., Sturve, J., Forlin, L. (2002) Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp. Biochem. Physiol. C 144, 191–196.Google Scholar
  41. 41.
    Turker, H., Takemura, A. (2011) Effects of environmental contaminants and natural substances on vitellogenesis in tilapia hepatocytes. Turk. J. Fish Aquat. Sci. 11, 539–545.Google Scholar
  42. 42.
    Turkish Statistical Institute (TÜİK). (2013) Fishery Statistics. Ankara: publication number: 4349, ISSN 1013-6177, pp. 66.Google Scholar
  43. 43.
    Unal, G., Marquez, E. C., Feld, M., Stavropoulos, P., Callard, I. P. (2014) Isolation of estrogen receptor subtypes and vitellogenin genes: expression in female Chalcalburnus tarichi. Comp. Biochem. Physiol. B 172–173, 67–73.PubMedGoogle Scholar
  44. 44.
    Ünal, G., Türkoğlu, V., Oğuz, A. R., Kaptaner, B. (2007) Gonadal histology and some biochemical characteristics of Chalcalburnus tarichi (Pallas, 1811) having abnormal gonads. Fish Physiol. Biochem. 33, 153–165.Google Scholar
  45. 45.
    Wu, M., Xu, H., Shen, Y., Qiu, W., Yang, M. (2011) Oxidative stress in zebrafsh embryos induced by short-term exposure to bisphenol A, nonylphenol, and their mixture. Environ. Toxicol. Chem. 30, 2335–2341.PubMedGoogle Scholar
  46. 46.
    Wu, M., Xu, H., Yang, M., Xu, H. (2011) Effects of chronic bisphenol A exposure on hepatic anti-oxidant parameters in medaka (Oryzias latipes). Toxicol. Environ. Chem. 93, 270–278.Google Scholar
  47. 47.
    Zhao, A. J., Liu, H. Q., Zhang, A. N., Wang, X. D., Zhang, H. Q. (2011) Effect of BDE-209 on glutathione system in Carrasius auratus. Environ. Toxicol. Pharmacol. 32, 35–39.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceYuzuncu Yil UniversityVanTurkey

Personalised recommendations