Exogenous Low-Dose Hydrogen Peroxide Enhances Drought Tolerance of Soybean (Glycine Max L.) through Inducing Antioxidant System

Abstract

Hydrogen peroxide (H2O2) functions as a signal molecule in plants under abiotic and biotic stress. In this study, the role of exogenous H2O2 in improving drought tolerance in two soybean cultivars (Glycine max L. Merrill) differing in their tolerance to drought was evaluated. Plants were grown in plastic pots with normal irrigation in a phytotron. Four weeks after radicle emergence, either 1 mM H2O2 or distilled water was sprayed as foliar onto the leaves of each plant, after drought stress was applied. Leaf samples were harvested on the 4th and 7th days of the drought. Antioxidant-related enzyme activity, such as the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), hydrogen peroxide (H2O2) and malondialdehyde (MDA) content was measured during the drought period. Drought stress decreased leaf water potential, relative water content and photosynthetic pigment content but enhanced lipid peroxidation and endogenous H2O2 concentration. By contrast, exogenous low dose H2O2 improved water status, pigment content and lipid peroxidation under drought stress. Endogenous H2O2 concentration was reduced by exogenous H2O2 as compared to drought treatment alone. H2O2 pre-treatment induced all the antioxidant enzyme activities, to a greater extent than the control leaves, during drought. H2O2 pretreatment further enhanced the activities of antioxidant enzymes in the tolerant cultivar compared to the sensitive cultivar. Results suggested that low dose H2O2 pre-treatment alleviated water loss and H2O2 content and increased drought stress tolerance by inducing the antioxidant system.

References

  1. 1.

    Abass, S. M., Mohamed, H. I. (2011) Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J. Bot. 41, 75–83.

    Google Scholar 

  2. 2.

    Aebi, H. (1983) Catalase. In: Bergmeyer, H. (ed.) Methods of Enzymatic Analysis. Weinheim-Verlag Chemie, Weinheim., Vol. 3, pp. 273–277.

    CAS  Google Scholar 

  3. 3.

    Arnon, D. I. (1949) Copper enzymes in chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.

    CAS  Article  Google Scholar 

  4. 4.

    Beauchamp, C., Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287.

    CAS  Article  Google Scholar 

  5. 5.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    CAS  Google Scholar 

  6. 6.

    Castillo, F. J. (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107, 469–477.

    CAS  Article  Google Scholar 

  7. 7.

    Desikan, R., Mackerness, S. A. H., Hancock, J. T., Neill, S. J. (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127, 159–172.

    CAS  Article  Google Scholar 

  8. 8.

    Dhindsa, R. S., Matowe, W. (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32, 79–91.

    CAS  Article  Google Scholar 

  9. 9.

    Foyer, C. H., Halliwell, B. (1976) Presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133, 21–25.

    CAS  Article  Google Scholar 

  10. 10.

    Foyer, C. H., Noctor, G. (2011) Ascorbate and glutathione: the heart of the redox Hub. Plant Physiol. 155, 2–18.

    CAS  Article  Google Scholar 

  11. 11.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stochiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.

    CAS  Article  Google Scholar 

  12. 12.

    Hossain, M. A., Asada, K. (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol. 25, 85–92.

    CAS  Google Scholar 

  13. 13.

    Hossain, M. A., Nakano, Y., Asada, K. (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 25, 385–395.

    CAS  Google Scholar 

  14. 14.

    Hossain, M. A., Fujita, M. (2013) Hydrogen peroxide priming stimulates drought tolerance in mustard (Brassica juncea L.). Plant Gene Trait. 4, 109–123.

    Google Scholar 

  15. 15.

    Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., Burritt, D. J., Fujita, M., Tran, L. S. P. (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front. Plant Sci., 6, 1–19.

    Google Scholar 

  16. 16.

    Huang, M., Guo, Z. (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plantarum 49, 81–84.

    CAS  Article  Google Scholar 

  17. 17.

    Ishibashi, Y., Yamaguchi, H., Yuasa, T., Inoue, M. I., Arima, S., Zheng, S. H. (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J. Plant Physiol. 168, 1562–1667.

    CAS  Article  Google Scholar 

  18. 18.

    Kim, T. H., Maik, B., Hu, H. H., Noriyuki, N., Julian, I. S. (2010) Guard cell signal transduction network advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61, 56–91.

    Google Scholar 

  19. 19.

    Komatsu, S., Kuji, R., Nanjo, Y., Hiraga, S., Furukawa, K. (2012) Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. J. Proteomics 77, 531–560.

    CAS  Article  Google Scholar 

  20. 20.

    Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C., Abdelly, C. (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 45, 244–249.

    CAS  Article  Google Scholar 

  21. 21.

    Li, J. T., Qui, Z. B., Zhang, X. W., Wang, L. S. (2011) Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol. Plant. 33, 835–842.

    CAS  Article  Google Scholar 

  22. 22.

    Liu, F. L., Andersen, M. N., Jensen, C. R. (2003) Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Funct. Plant Biol. 30, 271–280.

    CAS  Article  Google Scholar 

  23. 23.

    Liu, Z. J., Guo, Y. K., Bai, J. G. (2010) Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J. Plant Growth Regul. 29, 171–183.

    Article  Google Scholar 

  24. 24.

    Mohammadi, P. P., Moieni, A., Hiraga, S., Komatsu, S. (2012) Organ-specific proteomic analysis of drought-stressed soybean seedlings. J. Proteomics 75, 1906–1923.

    CAS  Article  Google Scholar 

  25. 25.

    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.

    CAS  Google Scholar 

  26. 26.

    Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., Hancock, J. T. (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J. Exp. Bot. 53, 1237–1247.

    CAS  Article  Google Scholar 

  27. 27.

    Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G., Grill, E., Schroeder. J. I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406, 731–734.

    CAS  Article  Google Scholar 

  28. 28.

    Saglam, A., Kalaycioglu, E., Guven, F. G., Saruhan, N., Kadioglu, A., Demiralay, M. (2014) Hydrogen peroxide extends postharvest life of Ctenanthe setosa leaf cuts under osmotic stress by reducing leaf Rolling. Hort. Environ. Biotechnol. 55, 308–314.

    CAS  Article  Google Scholar 

  29. 29.

    Shaw, B., Thomas, T. H., Cooke, D. T. (2002) Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regul. 37, 77–83.

    CAS  Article  Google Scholar 

  30. 30.

    Smirnoff, N. (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125, 27–58.

    CAS  Article  Google Scholar 

  31. 31.

    Smirnoff, N. (1998) Plant resistance to environmental stress. Curr. Opin. Biotech. 9, 214–219.

    CAS  Article  Google Scholar 

  32. 32.

    Sobhanian, H., Razavizadeh, R., Nanjo, Y., Ehsanpour, A. A., Jazii, F. R., Motamed, N., Komatsu, S. (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci. 8, 19–33.

    Article  Google Scholar 

  33. 33.

    Terzi, R., Kadioglu, A., Kalaycioglu, E., Saglam, A. (2014) Hydrogen peroxide pretreatment induces osmotic stress tolerance by influencing osmolyte and abscisic acid levels in maize leaves. J. Plant Interact. 9, 559–565.

    CAS  Article  Google Scholar 

  34. 34.

    Velikova, V., Yordanov, I., Edreva, A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Sci. 151, 59–66.

    CAS  Article  Google Scholar 

  35. 35.

    Wang, Y., Li, J. L., Wang, J. Z., Li, Z. K. (2010) Exogenous H2O2 improves the chilling tolerance of manilagrass and mascarenegrass by activating the antioxidative system. Plant Growth Regul. 61, 195–204.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neslihan Saruhan Guler.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guler, N.S., Pehlivan, N. Exogenous Low-Dose Hydrogen Peroxide Enhances Drought Tolerance of Soybean (Glycine Max L.) through Inducing Antioxidant System. BIOLOGIA FUTURA 67, 169–183 (2016). https://doi.org/10.1556/018.67.2016.2.5

Download citation

Keywords

  • Hydrogen peroxide
  • Gylcine max L.
  • drought tolerance
  • antioxidant enzymes