Advertisement

Acta Biologica Hungarica

, Volume 67, Issue 2, pp 159–168 | Cite as

Differential Allelopathic Expression of Different Plant Parts of Achillea Biebersteinii

  • Saeid Abu-RommanEmail author
Article

Abstract

Achillea biebersteinii (Asteraceae) is a perennial medicinal plant and has a wide distributional range in the Mediterranean region. The present study investigated the inhibitory effects of different plant parts of A. biebersteinii on germination characteristics and seedling growth of wild barley (Hordeum spontaneum). Water extracts were prepared by incubating separately five grams of dried powder of roots, stems, leaves and flowers of A. biebersteinii in 100 ml of distilled water for 24 h and distilled water was used as the control. The water extracts from different plant parts of A. biebersteinii differed in their effects on the germination and seedling growth of wild barley. Water extracts prepared from leaves and flowers were more suppressive to germination of wild barley than root and stem extracts. The maximum inhibition in radical and plumule growth of germinating caryopses and in root and shoot growth of greenhouse-grown wild barley was recorded for leaf extract followed by flower extract. The lowest Chl a, Chl b and total chlorophyll and protein contents were resulted after exposure to leaf extracts. According to these results, the inhibitory effects of different A. biebersteinii plant parts can be arranged in the order: leaf > flower > stem > root.

Keywords

Achillea biebersteinii Allelopathy chlorophyll pigments germination Hordeum spontaneum seedling growth water extract 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aburjai, M., Hudaib, M. (2006) Antiplatelet, antibacterial and antifungal activities of Achillea falcata extracts and evaluation of volatile oil composition, Pharmacog. Mag. 2, 191–197.Google Scholar
  2. 2.
    Abu-Romman, S. (2011) Comparison of methods for isolating high quality DNA from sage (Salvia officinalis), J. Med. Plants Res. 5, 938–941.Google Scholar
  3. 3.
    Abu-Romman, S. (2011) Allelopathic potential of Achillea biebersteinii Afan. (Asteraceae), World Appl. Sci. J. 15, 947–952.Google Scholar
  4. 4.
    Abu-Romman, S., Ammari, T. (2015) Allelopathic effect of Arundo donax, a mediterranean invasive grass, Plant Omics. 8, 287–291.Google Scholar
  5. 5.
    Alkofahi, A., Batshoun, R., Owais, W., Najib, N. (1996) Biological activity of some Jordanian medicinal plant extracts, Fitoterapia 68, 435–442.Google Scholar
  6. 6.
    Al-Qura’n, S. (2008) Taxonomical and pharmacological survey of therapeutic plants in Jordan, J. Nat. Prod. 1, 10–26.Google Scholar
  7. 7.
    Bader, A., Flamini, G., Cioni, P. L., Morelli, I. (2003) Essential oil composition of Achillea santolina L. and Achillea biebersteinii Afan collected in Jordan, Flavour Fragrance J. 18, 36–38.Google Scholar
  8. 8.
    Bais, H. P., Vepachedu, R., Gilroy, S. (2003) Callaway R. M. and Vivanco J. M., Allelopathy and exotic plant invasion: from molecules and genes to species interactions, Science 301, 1377–1380.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Batish, R. D., Lavanya, K., Singh, H. P., Kohli, R. K. (2007) Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea, J. Plant Growth Regul. 51, 119–128.Google Scholar
  10. 10.
    Baziramakenga, R., Leroux, G. D., Simard, R. R., Nadeau, P. (1997) Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings, Can. J. Bot. 75, 445–450.Google Scholar
  11. 11.
    Blum, U., Gerig, T. M., Worsham, A., D. King, L. D. (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate, J. Chem. Ecol. 19, 2791–2811.PubMedGoogle Scholar
  12. 12.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem. 72, 248–253.Google Scholar
  13. 13.
    Burgos, N. R., Talbert, R. E., Kim, K. S., Kuk, Y. I. (2004) Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale), J. Chem. Ecol. 30, 671–689.PubMedGoogle Scholar
  14. 14.
    Chung, I. M., Seigler, D., Miller, D. A., Kyung, S. H. (2000) Autotoxic compounds from fresh alfalfa leaf extracts: identification and biological activity, J. Chem. Ecol. 26, 315–327.Google Scholar
  15. 15.
    Cruz-Ortega, R., Anaya, A. L., Hernández, B. E., Laguna, G. (1998) Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia, J. Chem. Ecol. 24, 2039–2057.Google Scholar
  16. 16.
    Ding, J., Sun, Y., Xiao, C. L., Shi, K., Zhou, Y. H., Yu, J. Q. (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid, J. Exp. Bot. 58, 3765–3773.PubMedGoogle Scholar
  17. 17.
    Han, C., M., Pan, K. W., Wu, N., Wang, J. C., Li, W. (2008) Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive, Sci. Hortic. 116, 330–336.Google Scholar
  18. 18.
    Hoagland, L., Carpenter-Boggs, L., Reganold, J. P., Mazzola, M. (2008) Role of native soil biology in Brassicaseous seed meal-induced weed suppression, Soil Biol. Biochem. 40, 1689–1697.Google Scholar
  19. 19.
    Hu, G., Zhang, Z. (2013) Allelopathic effects of Chromolaena odorata on native and non-native invasive herbs, J. Food Agric. Environ. 11, 878–882.Google Scholar
  20. 20.
    Inderjit, Mallik, A. U. (2002) Can Kalmia angustifolia interference to black spruce (Picea mariana) be explained by allelopathy? Forest Ecol. Manag. 160, 75–84.Google Scholar
  21. 21.
    Jinhu, M., Guofang, X., Wenxiu, Y., Leilei, M., Mei, G., Yuguo, W. (2012) Inhibitory effects of leachate from Eupatorium adenophorum on germination and growth of Amaranthus retroflexus and Chenopodium glaucum, Acta Ecol. Sin. 32, 50–56.Google Scholar
  22. 22.
    Khaliq, A., Matloob, A., Irshad, M. S., Tanveer, A., Zamir, S. I. (2010) Organic weed management in maize (Zea mays L.) through integration of allelopathic crop residues, Pak. J. Weed Sci. Res. 16, 409–420.Google Scholar
  23. 23.
    Khanh, T. D., Hong, N. H., Xuan, T. D., Chung, I. M. (2005) Paddy weed control by medicinal and leguminous plants from Southeast Asia, Crop Prot. 24, 421–431.Google Scholar
  24. 24.
    Kobayashi, K. (2004) Factors affecting phytotoxic activity of allelochemicals in soil, Weed Biol. Manag. 4, 1–7.Google Scholar
  25. 25.
    Kumari, A., Kohli, R. K. (1987) Autotoxicity of ragweed parthenium (Parthenium hysterophorus), Weed Sci. 35, 629–632.Google Scholar
  26. 26.
    Laterra, P., Bazzalo, M. E. (1999) Seed-to-seed allelopathic effects between two invaders of burned Pampa grasslands, Weed Res. 39, 297–308.Google Scholar
  27. 27.
    Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Meth. Enzym. 148, 350–382.Google Scholar
  28. 28.
    McIntyre, D. S. (1980) Basic relationships for salinity evaluation from measurements on soil solution, Aust. J. Soil Res. 18, 199–206.Google Scholar
  29. 29.
    Mersie, W., Singh, M. (1993) Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf, J. Chem. Ecol. 19, 1293–1301.PubMedGoogle Scholar
  30. 30.
    Mishra, J. S., Swain, D., Singh, V. P. (2001) Allelopathic effect of Asphodelus tenuifolius on wheat, mustard, lentil and chickpea, Pestology. 25, 48–50.Google Scholar
  31. 31.
    Moreno, D, A., Ilic, N., Poulev, A., Brasaemle, D. L., Fried, S., Raskin, I. (2003) Inhibitory effects of grape seed extract on lipases, Nutrition. 19, 876–879.PubMedGoogle Scholar
  32. 32.
    Nekonam, M. S., Razmjoo, J., Kraimmojeni, H., Sharifnabi, B., Amini, H., Bahrami, F. (2014) Assessment of some medicinal plants for their allelopathic potential against redroot pigweed (Amaranthus retroflexus), J. Plant Protect. Res. 54, 90–95.Google Scholar
  33. 33.
    Nishida, N., Tamotsu, S., Nagata, N., Saito, C., Sakai, A. (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings, J. Chem. Ecol. 31, 1187–1203.PubMedGoogle Scholar
  34. 34.
    Olofsdotter, M. (1998) Allelopathy in rice. In: Olofsdotter, M. (ed.) Proceeding of the workshop on allelopathy in rice, 25–27 Nov. 1996. Manila, Philippines, International Rice Research Institute.Google Scholar
  35. 35.
    Rice, E. L. (1984) Allelopathy. second ed. Academic Press, Orlando, Florida.Google Scholar
  36. 36.
    SAS Institute Inc. (1988) The SAS System for Windows Release 6.12. SAS Institute Inc, Cary, NC.Google Scholar
  37. 37.
    Scrivanti, L. R. (2010) Allelopathic potential of Bothriochloa laguroides var. laguroides (DC.) Herter (Poaceae: Andropogoneae), Flora. 205, 302–305.Google Scholar
  38. 38.
    Siddiqui, Z. S. (2007) Allelopathic effects of black pepper leachings on Vigna mungo (L.) Hepper, Acta Physiol. Plant. 29, 303–308.Google Scholar
  39. 39.
    Siefermann-Harms, D. (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes, Physiol. Plant. 69, 561–568.Google Scholar
  40. 40.
    Sodaeizadeh, H., Rafieiolhossaini, M., Havlík, J., Van Damme, P. (2009) Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances, Plant Growth Regul. 59, 227–236.Google Scholar
  41. 41.
    Toncer, O., Basbag, S., Karaman, S., Dıraz, E., Basbag, M. (2010) Chemical composition of the essential oils of some Achillea species growing wild in Turkey, Int. J. Agric. Biol. 12, 527–530.Google Scholar
  42. 42.
    Weir, T. L., Park, S.-W., Vivanco, J. M. (2004) Biochemical and physiological mechanisms mediated by allelochemicals, Curr. Opin. Plant Biol. 7, 472–479.Google Scholar
  43. 43.
    Weston, L. A., Duke S. O. (2003) Weed and crop allelopathy. Crit. Rev. Plant Sci. 22, 367–389.Google Scholar
  44. 44.
    Yang, C. M., Lee, C. N., Chou, C. H. (2002) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation, Bot. Bull. Acad. Sin. 43, 299–304.Google Scholar
  45. 45.
    Yang, C. M., Chang, I. F., Lin, S. J., Chou, C. H. (2004) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: II. Stimulation of consumption-orientation, Bot. Bull. Acad. Sin. 45, 119–125.Google Scholar
  46. 46.
    Zohary, M., Feinbrun-Dothan, N. (1978) In Flora Palaestina, vol. 3. Israel Academy of Sciences and Humanities: Jerusalem. pp. 340–343.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa’Applied UniversityAl-SaltJordan

Personalised recommendations