Differential Allelopathic Expression of Different Plant Parts of Achillea Biebersteinii


Achillea biebersteinii (Asteraceae) is a perennial medicinal plant and has a wide distributional range in the Mediterranean region. The present study investigated the inhibitory effects of different plant parts of A. biebersteinii on germination characteristics and seedling growth of wild barley (Hordeum spontaneum). Water extracts were prepared by incubating separately five grams of dried powder of roots, stems, leaves and flowers of A. biebersteinii in 100 ml of distilled water for 24 h and distilled water was used as the control. The water extracts from different plant parts of A. biebersteinii differed in their effects on the germination and seedling growth of wild barley. Water extracts prepared from leaves and flowers were more suppressive to germination of wild barley than root and stem extracts. The maximum inhibition in radical and plumule growth of germinating caryopses and in root and shoot growth of greenhouse-grown wild barley was recorded for leaf extract followed by flower extract. The lowest Chl a, Chl b and total chlorophyll and protein contents were resulted after exposure to leaf extracts. According to these results, the inhibitory effects of different A. biebersteinii plant parts can be arranged in the order: leaf > flower > stem > root.


  1. 1.

    Aburjai, M., Hudaib, M. (2006) Antiplatelet, antibacterial and antifungal activities of Achillea falcata extracts and evaluation of volatile oil composition, Pharmacog. Mag. 2, 191–197.

    Google Scholar 

  2. 2.

    Abu-Romman, S. (2011) Comparison of methods for isolating high quality DNA from sage (Salvia officinalis), J. Med. Plants Res. 5, 938–941.

    CAS  Google Scholar 

  3. 3.

    Abu-Romman, S. (2011) Allelopathic potential of Achillea biebersteinii Afan. (Asteraceae), World Appl. Sci. J. 15, 947–952.

    CAS  Google Scholar 

  4. 4.

    Abu-Romman, S., Ammari, T. (2015) Allelopathic effect of Arundo donax, a mediterranean invasive grass, Plant Omics. 8, 287–291.

    CAS  Google Scholar 

  5. 5.

    Alkofahi, A., Batshoun, R., Owais, W., Najib, N. (1996) Biological activity of some Jordanian medicinal plant extracts, Fitoterapia 68, 435–442.

    Google Scholar 

  6. 6.

    Al-Qura’n, S. (2008) Taxonomical and pharmacological survey of therapeutic plants in Jordan, J. Nat. Prod. 1, 10–26.

    Google Scholar 

  7. 7.

    Bader, A., Flamini, G., Cioni, P. L., Morelli, I. (2003) Essential oil composition of Achillea santolina L. and Achillea biebersteinii Afan collected in Jordan, Flavour Fragrance J. 18, 36–38.

    CAS  Google Scholar 

  8. 8.

    Bais, H. P., Vepachedu, R., Gilroy, S. (2003) Callaway R. M. and Vivanco J. M., Allelopathy and exotic plant invasion: from molecules and genes to species interactions, Science 301, 1377–1380.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Batish, R. D., Lavanya, K., Singh, H. P., Kohli, R. K. (2007) Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea, J. Plant Growth Regul. 51, 119–128.

    CAS  Google Scholar 

  10. 10.

    Baziramakenga, R., Leroux, G. D., Simard, R. R., Nadeau, P. (1997) Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings, Can. J. Bot. 75, 445–450.

    CAS  Google Scholar 

  11. 11.

    Blum, U., Gerig, T. M., Worsham, A., D. King, L. D. (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate, J. Chem. Ecol. 19, 2791–2811.

    CAS  PubMed  Google Scholar 

  12. 12.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem. 72, 248–253.

    CAS  Google Scholar 

  13. 13.

    Burgos, N. R., Talbert, R. E., Kim, K. S., Kuk, Y. I. (2004) Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale), J. Chem. Ecol. 30, 671–689.

    CAS  PubMed  Google Scholar 

  14. 14.

    Chung, I. M., Seigler, D., Miller, D. A., Kyung, S. H. (2000) Autotoxic compounds from fresh alfalfa leaf extracts: identification and biological activity, J. Chem. Ecol. 26, 315–327.

    CAS  Google Scholar 

  15. 15.

    Cruz-Ortega, R., Anaya, A. L., Hernández, B. E., Laguna, G. (1998) Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia, J. Chem. Ecol. 24, 2039–2057.

    CAS  Google Scholar 

  16. 16.

    Ding, J., Sun, Y., Xiao, C. L., Shi, K., Zhou, Y. H., Yu, J. Q. (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid, J. Exp. Bot. 58, 3765–3773.

    CAS  PubMed  Google Scholar 

  17. 17.

    Han, C., M., Pan, K. W., Wu, N., Wang, J. C., Li, W. (2008) Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive, Sci. Hortic. 116, 330–336.

    Google Scholar 

  18. 18.

    Hoagland, L., Carpenter-Boggs, L., Reganold, J. P., Mazzola, M. (2008) Role of native soil biology in Brassicaseous seed meal-induced weed suppression, Soil Biol. Biochem. 40, 1689–1697.

    CAS  Google Scholar 

  19. 19.

    Hu, G., Zhang, Z. (2013) Allelopathic effects of Chromolaena odorata on native and non-native invasive herbs, J. Food Agric. Environ. 11, 878–882.

    Google Scholar 

  20. 20.

    Inderjit, Mallik, A. U. (2002) Can Kalmia angustifolia interference to black spruce (Picea mariana) be explained by allelopathy? Forest Ecol. Manag. 160, 75–84.

    Google Scholar 

  21. 21.

    Jinhu, M., Guofang, X., Wenxiu, Y., Leilei, M., Mei, G., Yuguo, W. (2012) Inhibitory effects of leachate from Eupatorium adenophorum on germination and growth of Amaranthus retroflexus and Chenopodium glaucum, Acta Ecol. Sin. 32, 50–56.

    Google Scholar 

  22. 22.

    Khaliq, A., Matloob, A., Irshad, M. S., Tanveer, A., Zamir, S. I. (2010) Organic weed management in maize (Zea mays L.) through integration of allelopathic crop residues, Pak. J. Weed Sci. Res. 16, 409–420.

    Google Scholar 

  23. 23.

    Khanh, T. D., Hong, N. H., Xuan, T. D., Chung, I. M. (2005) Paddy weed control by medicinal and leguminous plants from Southeast Asia, Crop Prot. 24, 421–431.

    Google Scholar 

  24. 24.

    Kobayashi, K. (2004) Factors affecting phytotoxic activity of allelochemicals in soil, Weed Biol. Manag. 4, 1–7.

    CAS  Google Scholar 

  25. 25.

    Kumari, A., Kohli, R. K. (1987) Autotoxicity of ragweed parthenium (Parthenium hysterophorus), Weed Sci. 35, 629–632.

    Google Scholar 

  26. 26.

    Laterra, P., Bazzalo, M. E. (1999) Seed-to-seed allelopathic effects between two invaders of burned Pampa grasslands, Weed Res. 39, 297–308.

    Google Scholar 

  27. 27.

    Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Meth. Enzym. 148, 350–382.

    CAS  Google Scholar 

  28. 28.

    McIntyre, D. S. (1980) Basic relationships for salinity evaluation from measurements on soil solution, Aust. J. Soil Res. 18, 199–206.

    CAS  Google Scholar 

  29. 29.

    Mersie, W., Singh, M. (1993) Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf, J. Chem. Ecol. 19, 1293–1301.

    CAS  PubMed  Google Scholar 

  30. 30.

    Mishra, J. S., Swain, D., Singh, V. P. (2001) Allelopathic effect of Asphodelus tenuifolius on wheat, mustard, lentil and chickpea, Pestology. 25, 48–50.

    Google Scholar 

  31. 31.

    Moreno, D, A., Ilic, N., Poulev, A., Brasaemle, D. L., Fried, S., Raskin, I. (2003) Inhibitory effects of grape seed extract on lipases, Nutrition. 19, 876–879.

    CAS  PubMed  Google Scholar 

  32. 32.

    Nekonam, M. S., Razmjoo, J., Kraimmojeni, H., Sharifnabi, B., Amini, H., Bahrami, F. (2014) Assessment of some medicinal plants for their allelopathic potential against redroot pigweed (Amaranthus retroflexus), J. Plant Protect. Res. 54, 90–95.

    Google Scholar 

  33. 33.

    Nishida, N., Tamotsu, S., Nagata, N., Saito, C., Sakai, A. (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings, J. Chem. Ecol. 31, 1187–1203.

    CAS  PubMed  Google Scholar 

  34. 34.

    Olofsdotter, M. (1998) Allelopathy in rice. In: Olofsdotter, M. (ed.) Proceeding of the workshop on allelopathy in rice, 25–27 Nov. 1996. Manila, Philippines, International Rice Research Institute.

    Google Scholar 

  35. 35.

    Rice, E. L. (1984) Allelopathy. second ed. Academic Press, Orlando, Florida.

    Google Scholar 

  36. 36.

    SAS Institute Inc. (1988) The SAS System for Windows Release 6.12. SAS Institute Inc, Cary, NC.

    Google Scholar 

  37. 37.

    Scrivanti, L. R. (2010) Allelopathic potential of Bothriochloa laguroides var. laguroides (DC.) Herter (Poaceae: Andropogoneae), Flora. 205, 302–305.

    Google Scholar 

  38. 38.

    Siddiqui, Z. S. (2007) Allelopathic effects of black pepper leachings on Vigna mungo (L.) Hepper, Acta Physiol. Plant. 29, 303–308.

    CAS  Google Scholar 

  39. 39.

    Siefermann-Harms, D. (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes, Physiol. Plant. 69, 561–568.

    CAS  Google Scholar 

  40. 40.

    Sodaeizadeh, H., Rafieiolhossaini, M., Havlík, J., Van Damme, P. (2009) Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances, Plant Growth Regul. 59, 227–236.

    CAS  Google Scholar 

  41. 41.

    Toncer, O., Basbag, S., Karaman, S., Dıraz, E., Basbag, M. (2010) Chemical composition of the essential oils of some Achillea species growing wild in Turkey, Int. J. Agric. Biol. 12, 527–530.

    CAS  Google Scholar 

  42. 42.

    Weir, T. L., Park, S.-W., Vivanco, J. M. (2004) Biochemical and physiological mechanisms mediated by allelochemicals, Curr. Opin. Plant Biol. 7, 472–479.

    CAS  Google Scholar 

  43. 43.

    Weston, L. A., Duke S. O. (2003) Weed and crop allelopathy. Crit. Rev. Plant Sci. 22, 367–389.

    CAS  Google Scholar 

  44. 44.

    Yang, C. M., Lee, C. N., Chou, C. H. (2002) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation, Bot. Bull. Acad. Sin. 43, 299–304.

    CAS  Google Scholar 

  45. 45.

    Yang, C. M., Chang, I. F., Lin, S. J., Chou, C. H. (2004) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: II. Stimulation of consumption-orientation, Bot. Bull. Acad. Sin. 45, 119–125.

    CAS  Google Scholar 

  46. 46.

    Zohary, M., Feinbrun-Dothan, N. (1978) In Flora Palaestina, vol. 3. Israel Academy of Sciences and Humanities: Jerusalem. pp. 340–343.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Saeid Abu-Romman.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abu-Romman, S. Differential Allelopathic Expression of Different Plant Parts of Achillea Biebersteinii. BIOLOGIA FUTURA 67, 159–168 (2016). https://doi.org/10.1556/018.67.2016.2.4

Download citation


  • Achillea biebersteinii
  • Allelopathy
  • chlorophyll pigments
  • germination
  • Hordeum spontaneum
  • seedling growth
  • water extract