Acta Biologica Hungarica

, Volume 67, Issue 2, pp 125–132 | Cite as

Effects of High Ambient Temperature on Fish Sperm Plasma Membrane Integrity and Mitochondrial Activity — A Flow Cytometric Study

  • Szabolcs Tamás NagyEmail author
  • Balázs Kakasi
  • László Pál
  • Máté Havasi
  • Miklós Bercsényi
  • Ferenc Husvéth


Local extreme climatic conditions occurring as a result of global climate change may interfere with the reproduction of animals. In the present study fish spermatozoa were incubated at different temperatures (20, 25, 30 and 40 °C) for 10 and 30 minutes, respectively and plasma membrane integrity and mitochondrial membrane potential changes were evaluated with flow cytometry using SYBR-14/PI and Mitotracker Deep Red FM fluorescent dyes. No significant differences were found in plasma membrane integrity at either incubation temperatures or time points. Mitotracker Deep Red FM histogram profiles indicating mitochondrial activity showed significant (p < 0.001) alterations in all cases of higher (25, 30 and 40 °C) temperature treatments as compared to the samples incubated at 20 °C. Our results indicate that fish spermatozoa exposed to high temperatures suffer sublethal damage that cannot be detected with conventional, vital staining techniques.


Fish sperm plasma membrane integrity mitochondrial activity high temperature flow cytometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aitken, R. J., De Iuliis G. N., Finnie J. M., Hedges A., McLachlan R. I. (2010) Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum. Reprod. 25, 2415–2426.CrossRefGoogle Scholar
  2. 2.
    Barth, A. D., Oko, R. (1989) Abnormal morphology of bovine spermatozoa. Iowa State University Press, Ames.Google Scholar
  3. 3.
    Bradshaw, W. E., Holzapfel, C. M. (2006) Evolutionary response to rapid climate change. Science 312, 1477–1478.CrossRefGoogle Scholar
  4. 4.
    Bronson, F. (2009) Climate change and seasonal reproduction in mammals. Philos. T. Roy. Soc. B. 364, 3331–3340.CrossRefGoogle Scholar
  5. 5.
    Bronson, F. H. (1989) Mammalian reproductive biology. University of Chicago Press, Chicago.Google Scholar
  6. 6.
    Cox, C., Reeder, J. E., Robinson, R. D., Suppes, S. B., Wheeless, L. L. (1988) Comparison of frequency distributions in flow cytometry. Cytometry 9, 291–298.CrossRefGoogle Scholar
  7. 7.
    Cummins, J. (2009) 5-Sperm motility and energetics. In: Pitnick, T. R. B. J. H. (ed.) Sperm Biology Academic Press, London, pp. 185–206.CrossRefGoogle Scholar
  8. 8.
    Garner, D., Johnson, L., Yue, S., Roth, B., Haugland, R. (1994) Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J. Androl. 15, 620–629.PubMedGoogle Scholar
  9. 9.
    Guthrie, H., Welch, G., Theisen, D., Woods, L. (2011) Effects of hypothermic storage on intracellular calcium, reactive oxygen species formation, mitochondrial function, motility, and plasma membrane integrity in striped bass (Morone saxatilis) sperm. Theriogenology 75, 951–961.CrossRefGoogle Scholar
  10. 10.
    Guthrie, H., Woods, L., Long, J., Welch, G. (2008) Effects of osmolality on inner mitochondrial transmembrane potential and ATP content in spermatozoa recovered from the testes of striped bass (Morone saxatilis). Theriogenology 69, 1007–1012.CrossRefGoogle Scholar
  11. 11.
    Hagedorn, M., Ricker, J., McCarthy, M., Meyers, S., Tiersch, T., Varga, Z., Kleinhans, F. (2009) Biophysics of zebrafish (Danio rerio) sperm. Cryobiology 58, 12–19.CrossRefGoogle Scholar
  12. 12.
    Hallap, T., Nagy, S., Jaakma, Ü., Johannisson, A., Rodriguez-Martinez, H. (2005) Mitochondrial activity of frozen-thawed spermatozoa assessed by MitoTracker Deep Red 633. Theriogenology 63, 2311–2322.CrossRefGoogle Scholar
  13. 13.
    Horváth, Á., Martínez-Páramo, S., Kovács, Á. I., Urbányi, B., Herráez, P. (2010) Effect of ovarian fluid on the mobility of fresh and cryopreserved sperm of the common carp (Cyprinus carpio L.). Állattani Közl. 95, 25–33. (In Hungarian)Google Scholar
  14. 14.
    Hossain, M. S., Johannisson, A., Wallgren, M., Nagy, S., Siqueira, A. P., Rodriguez-Martinez, H. (2011) Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art. Asian J. Androl. 13, 406.CrossRefGoogle Scholar
  15. 15.
    Inaba, K. (2008) Molecular mechanisms of the activation of flagellar motility in sperm. In: Alavi, S. M. H., Cosson, J. J., Coward, K., Rafiee, G. (ed.) Fish spermatology. Alpha Science International Ltd,, Oxford, UK, pp. 267–280.Google Scholar
  16. 16.
    Ingermann, R. L. (2008) Energy metabolism and respiration in fish spermatozoa. In: Alavi, S. M. H., Cosson, J. J., Coward, K., Rafiee, G. (ed.) Fish spermatology. Alpha Science International Ltd., Oxford, UK, pp. 215–240.Google Scholar
  17. 17.
    Jamieson, B. G. M. (1991) Fish Evolution and Systematics: Evidence from Spermatozoa: with a Survey of Lophophorate, Echinoderm, and Protochordate Sperm and an Account of Gamete Cryopreservation. Cambridge University Press, Cambridge.Google Scholar
  18. 18.
    Jonsson, B., Jonsson N. (2009) A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J. Fish Biol. 75, 2381–2447.CrossRefGoogle Scholar
  19. 19.
    Nagy, S., Kakasi, B., Havasi, M., Németh, S., Pál, L., Bercsényi, M., Husvéth, F. (2013) Dynamic cellular changes during fish sperm activation as measured by flow cytometry. Diversification in Inland Finfish Aquaculture II, Vodnany, Czech Republic.Google Scholar
  20. 20.
    Pizzo, P., Drago, I., Filadi, R., Pozzan, T. (2012) Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflug. Arch. Eur. J. Phy. 464, 3–17.CrossRefGoogle Scholar
  21. 21.
    Sood, S., Malecki, I., Tawang, A., Martin, G. (2012) Survival of emu (Dromaius novaehollandiae) sperm preserved at subzero temperatures and different cryoprotectant concentrations. Theriogenology 78, 1557–1569.CrossRefGoogle Scholar
  22. 22.
    West, J. (2003) Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86, 2131–2144.CrossRefGoogle Scholar
  23. 23.
    Young, I. T. (1977) Proof without prejudice: use of the Kolmogorov–Smirnov test for the analysis of histograms from flow systems and other sources. J. Histochem. Cytochem. 25, 935–941.CrossRefGoogle Scholar
  24. 24.
    Zieba, G., Fox, M. G., Copp, G. H. (2010) The effect of elevated temperature on spawning of introduced pumpkinseed Lepomis gibbosus in Europe. J. Fish Biol. 77, 1850–1855.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Szabolcs Tamás Nagy
    • 1
    Email author
  • Balázs Kakasi
    • 2
  • László Pál
    • 1
  • Máté Havasi
    • 1
    • 3
  • Miklós Bercsényi
    • 1
  • Ferenc Husvéth
    • 1
  1. 1.Department of Animal Sciences and Animal HusbandryUniversity of Pannonia, Georgikon FacultyKeszthelyHungary
  2. 2.Institute of Environmental SciencesUniversity of PannoniaVeszprémHungary
  3. 3.Research Institute for Fisheries and AquacultureNational Agricultural Research and Innovation CentreHungary

Personalised recommendations