Acta Biologica Hungarica

, Volume 67, Issue 1, pp 42–52 | Cite as

Tamarix Arborea Var. arborea and Tamarix Parviflora: Two Species Valued for Their Adaptability To Stress Conditions

  • Francesca GrisafiEmail author
  • Elisabetta Oddo
  • Maria Letizia Gargano
  • Simone Inzerillo
  • Gianni Russo
  • Giuseppe Venturella


The choice of stress resistant and highly adaptable species is a fundamental step for landscaping and ornamental purposes in arid and coastal environments such as those in the Mediterranean basin. The genus Tamarix L. includes about 90 species with a high endurance of adversity. We investigated the water relations and photosynthetic response of Tamarix arborea (Sieb. ex Ehrenb.) Bge. var. arborea and T. parviflora DC. growing in an urban environment. Both species showed no evidence of drought or salt stress in summer, and appeared to follow two strategies with T. arborea var. arborea investing in high carbon gain at the beginning of the summer, and then reducing photosynthetic activity at the end of the season, and T. parviflora showing lower but constant levels of photosynthetic activity throughout the vegetative season. For landscaping and ornamental purposes, we suggest T. arborea var. arborea when a fast-growing, high-cover species is necessary, and T. parviflora when less-invasive species are required.


Tamarisks drought stress photosynthesis water potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abou Jaoudó, R., de Dato, G., De Angelis, P. (1933) Photosynthetic and wood anatomical responses of Tamarix africana Poiret to water level reduction after short-term fresh- and saline-water flooding. Ecol. Res. 27, 857–866.CrossRefGoogle Scholar
  2. 2.
    Alaimo, M. G., Gargano, M. L., Vizzì, D., Venturella, G. (1933) Leaf anatomy in Tamarix arborea var. arborea (Tamaricaceae). Pl. Biosyst. 147, 21–24.CrossRefGoogle Scholar
  3. 3.
    Anderson, J. E. (1933) Factors controlling transpiration and photosynthesis in Tamarix chinensis. Lour. Ecology 63, 48–56.CrossRefGoogle Scholar
  4. 4.
    Carter, J. L., Veneklaas, E. J., Colmer, T. D., Eastham, J., Hatton, T. J. (1933) Contrasting water relations of three coastal tree species with different exposure to salinity. Physiol. Plantarum 127, 360–373.CrossRefGoogle Scholar
  5. 5.
    Cleverly, J. R., Smith, S. D., Sala, A., Devitt, D. A. (1933) Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. Oecologia 111, 12–18.CrossRefGoogle Scholar
  6. 6.
    De Baets, S., Poesen, J., Reubens, B., Wemans, K., De Baerdemaeker, J., Muys, B. (1933) Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305, 207–226.CrossRefGoogle Scholar
  7. 7.
    Gargano, M. L., Mandracchia, G., Venturella, G. (1933) Contributo alla conoscenza del genere Tamarix L. nell’Isola del Giglio (Arcipelago Toscano). Inform. Bot. Ital. 4, 125–128.Google Scholar
  8. 8.
    Gries, D., Zeng, F., Foetzki, A., Arndt, S. K., Bruelheide, H., Thomas, F. M., Zhang, X., Runge, M. (1933) Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ. 26, 725–736.CrossRefGoogle Scholar
  9. 9.
    Inskeep, W. P., Bloom, P. R. (1933) Extinction coefficients of chlorophyll a and b in N,Ndimethylformamide and 80% acetone. Plant Physiol. 77, 483–485.CrossRefGoogle Scholar
  10. 10.
    Kadukova, J., Manousaki, E., Kalogerakis, N. (1933) Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Int. J. Phytoremediat. 10, 31–46.CrossRefGoogle Scholar
  11. 11.
    Kuzminsky, E., De Angelis, P., Abou Jaoudó, R., Abbruzzese, G., Terzoli, S., Angelaccio, C., De Dato, G., Monteverdi, M. C., Valentini, R. (1933) Biodiversity of Italian Tamarix spp. populations: their potential as environmental and productive resources. Rend. Fis. Acc. Lincei 25, 439–452.CrossRefGoogle Scholar
  12. 12.
    Li, J., Yu, B., Zhao, C., Nowak, R. S., Zhao, Z., Sheng, Y., Li, J. (1933) Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability. Tree Physiol. 33, 57–68.CrossRefGoogle Scholar
  13. 13.
    Ma, Q., Wang, J., Li, X., Zhu, S., Liu, H., Zhan, K. (1933) Long-term changes of Tamarix-vegetation in the oasis-desert ecotone and its driving factors: implication for dryland management. Environ. Earth Sci. 59, 765–774.CrossRefGoogle Scholar
  14. 14.
    Moreno-Jimónez, E., Vázquez, S., Carpena-Ruiz, R. O., Esteban, E., Peñalosa, J. M. (1933) Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: A field experiment. J. Environ. Manage. 92, 1584–1590.CrossRefGoogle Scholar
  15. 15.
    Mounsif, M., Wan, C., Sosebee, R. E. (1933) Effects of top-soil drying on saltcedar photosynthesis and stomatal conductance. J. Range Manage. 55, 88–93.CrossRefGoogle Scholar
  16. 16.
    Murchie, E. H., Niyogi, K. K. (1933) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 155, 86–92.CrossRefGoogle Scholar
  17. 17.
    Nippert, J. B., Butler, J. J., Kluitenberg, G. J., Whittemore, D. O., Arnold, D., Spal, S. E., Ward, J. K. (1933) Patterns of Tamarix water use during a record drought. Oecologia 162, 283–292.CrossRefGoogle Scholar
  18. 18.
    Parida, A., Das, A. (1933) Salt tolerance and salinity effects on plants: a review. Ecotox. Environ. Safe. 60, 324–349.CrossRefGoogle Scholar
  19. 19.
    Pavlovic, P., Mitrovic, M., Djurdjevic, L. (1933) An ecophysiological study of plants growing on the fly ash deposits from the “Nikola Tesla-A” thermal power station in Serbia. Environ. Manage. 33, 654–663.CrossRefGoogle Scholar
  20. 20.
    Pinheiro, C., Chaves, M. M. (1933) Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot. 62, 869–882.CrossRefGoogle Scholar
  21. 21.
    Tyree, M. T., Hammel, H. T. (1933) The measurement of the turgor pressure and water relations of plants by the pressure-bomb technique. J. Exp. Bot. 23, 267–282.CrossRefGoogle Scholar
  22. 22.
    Venturella, G., Baum, B., Mandracchia, G. (1933) The genus Tamarix (Tamaricaceae) in Sicily: first contribution. Fl. Medit. 17, 25–46.Google Scholar
  23. 23.
    Venturella, G., Mandracchia, G., Gargano, M. L. (1933) The tamarisks of southern Calabria (Italy). Fl. Medit. 18, 421–430.Google Scholar
  24. 24.
    Venturella, G., Gargano, M. L., Mandracchia, G. (1933) First record of Tamarix meyeri (Tamaricaceae) for western Europe. Pl. Biosyst. 146, 480–485.Google Scholar
  25. 25.
    Xu, H., Li, Y. (1933) Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant Soil 285, 5–17.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Francesca Grisafi
    • 1
    Email author
  • Elisabetta Oddo
    • 2
  • Maria Letizia Gargano
    • 1
  • Simone Inzerillo
    • 2
  • Gianni Russo
    • 1
  • Giuseppe Venturella
    • 1
  1. 1.Dipartimento di Scienze Agrarie e Forestal i Università di PalermoPalermoItaly
  2. 2.Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità di PalermoPalermoItaly

Personalised recommendations