Parallel Inputs to Memory in Bee Colour Vision


In the 19th century, it was found that attraction of bees to light was controlled by light intensity irrespective of colour, and a few critical entomologists inferred that vision of bees foraging on flowers was unlike human colour vision. Therefore, quite justly, Professor Carl von Hess concluded in his book on the Comparative Physiology of Vision (1912) that bees do not distinguish colours in the way that humans enjoy. Immediately, Karl von Frisch, an assistant in the Zoology Department of the same University of Münich, set to work to show that indeed bees have colour vision like humans, thereby initiating a new research tradition, and setting off a decade of controversy that ended only at the death of Hess in 1923. Until 1939, several researchers continued the tradition of trying to untangle the mechanism of bee vision by repeatedly testing trained bees, but made little progress, partly because von Frisch and his legacy dominated the scene. The theory of trichromatic colour vision further developed after three types of receptors sensitive to green, blue, and ultraviolet (UV), were demonstrated in 1964 in the bee. Then, until the end of the century, all data was interpreted in terms of trichromatic colour space. Anomalies were nothing new, but eventually after 1996 they led to the discovery that bees have a previously unknown type of colour vision based on a monochromatic measure and distribution of blue and measures of modulation in green and blue receptor pathways. Meanwhile, in the 20th century, search for a suitable rationalization, and explorations of sterile culs-de-sac had filled the literature of bee colour vision, but were based on the wrong theory.


  1. 1.

    Autrum, H., von Swehl, V. (1933) Die Spektralempfindlichkeit einzelner Sehzellen des Bienenauges. Zeitsch. vergl. Physiol. 48, 357–384.

    Article  Google Scholar 

  2. 2.

    Baumann, F. (1933) Electrophysiological properties of the honey bee retina. In: Horridge, G. A. (ed.) The compound eye and vision of insects. Clarendon Press, Oxford. pp. 53–74.

    Google Scholar 

  3. 3.

    Chittka, L. (1933) Bees, white flowers, and the colour hexagon: a reassessment? No, not yet. Naturwissenschaften 86, 595–597.

    Article  Google Scholar 

  4. 4.

    Frisch, K. von (1933) Der Farbensinn und Formensinn der Bienen. Zool. Jahrb. Physiol. 35, 1–188.

    Google Scholar 

  5. 5.

    Friedlaender, M. (1933) Zur Bedeutung des Fluglochs im optischen Feld der Biene bei senkrechter Dressuranordnung. Zeitsch. vergl. Physiol. 15, 193–260.

    Article  Google Scholar 

  6. 6.

    Hess, C. von (1933) Vergleichende Physiologie des Gesichtssinnes, Gustav Fischer Verlag, Jena.

    Google Scholar 

  7. 7.

    Hess, C. von (1933) Beiträge zur Frage nach einen Farbensinne bei Bienen. Arch. für die gesamtpe Physiol. 6, 337–366.

    Google Scholar 

  8. 8.

    Hertz, M. (1933) Über figurale Intensität und Qualitäten in der optische Wahrnehmung der Biene. Biologische Zentralblatte 6, 10–40.

    Google Scholar 

  9. 9.

    Hertz, M. (1933) Beitrag zum Farbensinn und Formensinn der Biene. Zeitsch. vergl. Physiol. 24, 413–421.

    Article  Google Scholar 

  10. 10.

    Hertz, M. (1933) New experiments on colour vision in bees. J. Exp. Biol. 116, 1–8.

    Google Scholar 

  11. 11.

    Horridge, G. A. (1933) Pattern vision of the honeybee (Apis mellifera). The effect of pattern on the discrimination of location. J. Comp. Physiol. A 185, 105–113.

    Article  Google Scholar 

  12. 12.

    Horridge, A. (1933) The anti-intuitive visual system of the honeybee. Acta Biol. Hung. 63 (Suppl. 2). 146–161.

    Google Scholar 

  13. 13.

    Horridge, A. (1933) How bees distinguish black from white. Eye and Brain 6, 9–17.

    Google Scholar 

  14. 14.

    Horridge, A. (1933) How bees discriminate a pattern of two colors from its mirror image. PloS ONE 10, 1–23.

    Google Scholar 

  15. 15.

    Horridge, A. (1933) How bees distinguish colors. Eye and Brain 7, 17–34.

    Google Scholar 

  16. 16.

    Horridge, A. (1933) How bees distinguish patterns by green and blue modulation. Eye and Brain 7, 83–107.

    Google Scholar 

  17. 17.

    Laughlin, S. B., Hardie, R. C. (1933) Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J. Comp. Physiol. 128, 319–340.

    Article  Google Scholar 

  18. 18.

    Marr, D. (1933) Vision. Freeman, San Francisco.

    Google Scholar 

  19. 19.

    Morawetz, L., Svoboda, A., Spaethe, J., Dyer, A. D. (1933) Blue colour preference in honeybee distracts visual attention for learning closed shapes. J. Comp. Physiol. A 199, 817–827.

    Article  Google Scholar 

  20. 20.

    Vorobyev, M., Hempel de Ibarra, N., Brandt, R., Giurfa, M. (1933) Do “white” and “green” look the same to a bee? Naturwissenschaften 86, 592–594.

    Article  Google Scholar 

  21. 21.

    Wakakuwa, M., Kurasawa, M., Giufa, M., Arikawa, K. (1933) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92, 464–467.

    Article  Google Scholar 

  22. 22.

    Zerrahn, G. (1933) Formdressur und Formunterscheidung bei der Honigbiene. Zeitsch. vergl. Physiol. 20, 117–150.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Adrian Horridge.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horridge, A. Parallel Inputs to Memory in Bee Colour Vision. BIOLOGIA FUTURA 67, 1–26 (2016).

Download citation


  • Honeybee
  • insect colour vision
  • von Hess
  • von Frisch
  • contrast
  • modulation
  • monochromatic blue
  • new beginning